
Verifying Event-B Hybrid Models Using
Cyclone

Hao Wu1(B) and Zheng Cheng2

1 Computer Science Department, Maynooth University, Kildare, Ireland
haowu@cs.nuim.ie

2 Telecom Nancy, University of Lorraine, Thionville, France

zheng.cheng@inria.fr

Abstract. Modelling hybrid systems using Event-B is challenging and
users typically are unsure about whether their Event-B models are
over/under-specified. In this short paper, we present a work-in-progress
specification language called Cyclone to tackle this challenge. We demon-
strate how one can use Cyclone to check an Event-B hybrid model using
a car controller example. Our demonstration shows that Cyclone has a
great potential to be used to verify Event-B hybrid models.

1 Introduction

Event-B is a widely used specification language that allows users model a system
design using set theory [1]. Its platform Rodin has many effective features for
stepwise refinement and mathematical proofs [2]. This makes Event-B a quite
popular specification language. Recently, there is a trend of using Event-B to
model hybrid systems [3–7]. However, the resulting Event-B models are typically
very complex and difficult for users to perform analysis or understand. This
imposes three immediate challenges on using Event-B: 1) How can users check
whether a proposed predicate is a correct invariant for their Event-B models. 2)
How can users ensure their design is not under/over specified. 3) How can users
identify non-determinism in their models to ensure correct code generation.

In this paper, we present a work-in-progress specification language called
Cyclone to tackle these challenges. Cyclone provides users a unique way for
describing a complex system using graph-based notations. It allows users to
explicitly construct a graph and specify two kinds of properties: graph and com-
putation. The graph-based properties specify a particular set of graph patterns
that a path (to be found in a graph) must obey. For example, whether a graph
contains non-determinism transitions, Hamiltonian cycle or Euler paths. The
computation properties specify a set of computational instructions (e.g. invari-
ants, assertions, conditional transitions) that must be satisfied. For example,
finding a path (in a graph) that can make two variables x ≥ 0∧y ≤ 0. By comb-
ing both graph-based and computational properties, Cyclone is able to perform
powerful checks and analysis for complex models.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
U. Glässer et al. (Eds.): ABZ 2023, LNCS 14010, pp. 179–184, 2023.
https://doi.org/10.1007/978-3-031-33163-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33163-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-33163-3_13


180 H. Wu and Z. Cheng

2 Current Architecture

Cyclone is mainly written in Java and consists of more than 100k+ lines of code
including building scripts, web interface, IDE plug-ins, test cases and configura-
tions. Currently, Cyclone can be compiled on the command-line and can be run
on Windows, Linux and MacOS. The current architecture of Cyclone is shown
in Fig. 1. The front-end of Cyclone is responsible for parsing, semantic and type
checking. The back-end uses a new bounded verification algorithm to generate
a set of verification conditions. These conditions can be efficiently solved by an
SMT solver1. To prove user-defined properties, Cyclone typically either produces
a trace if properties can be satisfied or a counter-example to show that proper-
ties cannot be satisfied. A trace or counter-example records how system states
change within the specified bound.

One can have access to Cyclone using one of the following ways:

– Download link:
https://classicwuhao.github.io/cyclone tutorial/installation.html

– Online playground: https://cyclone4web.cs.nuim.ie/editor/

Fig. 1. Architecture of Cyclone.

3 An Illustrative Example

In this section, we use a car controller example to illustrate how one can use
Cyclone to check a proposed invariant for an Event-B model [8]. This example
models a car controller that must decide when to decelerate the car so it can
stop at or near (before) a stop sign at position S.

This controller uses two variables p and v to track a car’s position and veloc-
ity, respectively. The car face towards the stop sign and its continuous dynamical
system is captured by the differential equation ṗ = v, v̇ = u. The controller may
change its velocity every δ second by (de)accelerating. To keep this example
simple, this is determined by 3 actuation commands: (1) accelerate the car with
a rate of A (2) maintain the current velocity by setting acceleration to 0 (3) de-
accelerate the car by braking with a rate of −B. The safety property is defined
as ∀t · t ∈ [0, now] ⇒ p(t) ≤ S ∧ v(t) ≥ 0. This means up until now that the car
position should always satisfy p ≤ S ∧ v ≥ 0.
1 We use Z3 as Cyclone’s default solver.

https://classicwuhao.github.io/cyclone_tutorial/installation.html
https://cyclone4web.cs.nuim.ie/editor/


Verifying Event-B Hybrid Models Using Cyclone 181

We model this controller using Event-B and the part of our model is
shown in Listing 1.1. This model implements a closed-loop design and has two
types of events: controller and system. Each controller event decides an actu-
ation command based on different conditions over the system states. The sys-
tem event (Progression in Line 14) specifies how the system behaves (given
the actuation command) and for how long. Our Event-B model has a total
of three controller events and one system event. The three controller events
are: Acceleration,Brake and Maintain. Due to page limitation, we only show
Acceleration in Listing 1.1 (Line 5–12). This event specifies that it is safe to
accelerate the car with a rate of A (Line 102 if the current position plus the
braking distance of the car is less than position S of the stop sign (Line 7).
When the controller events are terminated, the system event Progression (Line
14–22) starts. This event updates the position and velocity of the car at time
t+ δ. When the system event terminates, the controller events start again to act
for the next cycle.

1 Machine car controller
2 Variables p v t s u
3 . . .
4 Events . . .
5 Event Acceleration =̂
6 Where . . .

7 grd1 : pA(t + δ) + vA(t+δ)2

2B
≤ S

8 . . .
9 Then . . .

10 act1 : u := A
11 . . .
12 End
13 . . .
14 Event Progression =̂
15 Where . . .
16 . . .
17 Then
18 act2 : p := p �− ((t, t + δ] � pA)
19 act3 : v := v �− ((t, t + δ] � vA)
20 act4 : t := t + δ
21 . . .
22 End
23 End

Listing 1.1. The part of the Event-B model for the car controller.The complete Event-
B specification is available at: https://classicwuhao.github.io/event b spec.pdf

Here, we are interested in checking whether our Event-B model (is initialized
at a safe state) could reach to an unsafe state (the safety property does not hold).
To do this, we first propose an invariant for our Event-B model. We then use
Rodin to generate proof obligations for the invariant. However, proving gener-
ated proof obligations of an invariant is challenging and time consuming. Hence,
to tackle this challenging task, we take advantage of Cyclone for automated rea-
soning. We translate our Event-B model into a Cyclone specification and ask

2 pu, vu are the analytical solutions of the differential equations ṗ = v, v̇ = u, where
pu(t′) = p(t) + v(t)(t′ − t) + 1

2
u(t′ − t)2, and vu(t′) = v(t) + u(t′ − t).

https://classicwuhao.github.io/event_b_spec.pdf


182 H. Wu and Z. Cheng

Cyclone to certify whether our proposed invariant holds. For our car controller,
the proposed invariant φ is defined as: ∀e ·e ∈ [0, t] ⇒ p(e)+ v(e)2

2B ≤ S∧v(e) ≥ 0.
Currently, the translation from an Event-B model to a Cyclone specification

is done manually. The aim here is to build a transition system using Cyclone’s
graph notations. Listing 1.2 shows the translated Cyclone specification from our
Event-B model in Listing 1.1. We first map each controller event to a computa-
tional node in Cyclone. A computational node (with modifier normal) indicates
that the defined instructions inside the node get executed when this node is
visited. For example, the Acceleration event in Listing 1.1 (Line 30) is mapped
to the computational node Acceleration in Cyclone. This node contains instruc-
tions act1 (Line 10 in Listing 1.1) which indicates the acceleration of the car
is now assigned to A. We also introduce two additional empty nodes: Init and
Decide. We use Init node to specify the initial state of the system and Decide
to indicate the controller makes a decision on which actuation command to be
issued.

24 option−trace=true ; // produce a t race
25 machine c a r c o n t r o l l e r {
26 real p , v , t , u ;
27

28 normal start node I n i t {} // s t a r t o f the t r a n s i t i o n system
29 normal node Decide {}
30 normal node Acce l e r a t i on {act1 ; }
31 /∗ end o f each d e c i s i o n cy c l e . ∗/
32 normal f ina l node Progre s s i on {act2; act3; act4;}
33 normal node Brake {u = −B ; }
34 normal node Maintain {u = 0 ; }
35

36 edge { I n i t → Decide}
37 edge {Decide → Acce l e r a t i on where grd1 ; }
38 edge {Decide → Brake where . . . ; }
39 edge {Decide → Maintain where . . . ; }
40 edge { Acce l e r a t i on → Progre s s i on }
41 edge {Brake → Progre s s i on }
42 edge {Maintain → Progre s s i on }
43 edge { Progre s s i on → Decide}
44

45 invariant SysInv { p + v2

2B
≤ S ∧ v ≥ 0 ; }

46

47 goal{
48 assert (A > 0 ∧ B > 0 ∧ p ≥ 0 ∧ t = 0 ∧
49 p + v2

2B
≤ S ∧ S ≥ 0 ∧ dt > 0) in (Init) ;

50

51 check for 3
52 }
53 }

Listing 1.2. The Cyclone specification for the Event-B model in Listing 1.1. Here
act1 . . . act4 and grd1 are the same as those in Listing1.1.The complete Cyclone speci-
fication is available at: https://classicwuhao.github.io/car abz.cyclone

Next, we build a set of edges (transitions) for our nodes. The guard of an
event from our Event-B model is translated to a conditional edge (transition)
in Cyclone. For example, the grd1 in Listing 1.1 (Line 7) is directly mapped

https://classicwuhao.github.io/car_abz.cyclone


Verifying Event-B Hybrid Models Using Cyclone 183

to the conditional edge in Listing 1.2 (Line 37). This means that the transition
Decision → Acceleration can only happen when the grd1 is satisfied and this
means the controller decides to issue actuation command: acceleration.

We map our proposed invariant φ to the invariant (Line 45) in Cyclone.
The semantics behind this is that the invariant must hold after each transition.
Finally, we need to ensure the controller starts at a safe initial state by setting
appropriate conditions in Line 49. Now, we have established a transition graph
for the car controller modelled in Event-B. Hence, we can check whether there
exits a path to break our proposed invariant (Line 51). We check all transitions
that has exact length of 3. This is because each (decision) cycle has a length
of 33. For example, a cycle Init → Decide → Maintain → Progression has a
length of 3 including node Init4. In this case, one cycle is enough for Cyclone
to discover a counter-example (trace). Figure 2 shows this trace (returned from
Cyclone) and it depicts that the controller enters an unsafe state after issuing
actuation command:brake. In the real world, after a car brakes and its velocity
cannot reach below 0. It is not possible to drive a car backward by braking.
Hence, this counter-example shows that our Event-B model for this car controller
is under-specified.

Fig. 2. A trace (a path length=3) generated by Cyclone shows that our proposed
invariant does not hold for the car controller. To keep it simple, we set Cyclone to
round off to 2 decimal places for each variable.

4 Experience Gained

In this short demo, we have gained two valuable experience. (1) Using Event-B
to model hybrid systems is challenging and tools are needed for discharging gen-
erated proof obligations, in particular an invariant of a system. (2) Simulating a
system with the correct and meaningful values is very useful in helping verifica-
tion of a hybrid system. However, finding such values is not easy. We successfully
applied our new specification language Cyclone on this car controller by demon-
strating finding a counter example that breaks an invariant. However, finding
3 One can check multiple cycles by setting a larger upper bound or multiple bounds.
4 The length of a path is decided by the number of nodes.



184 H. Wu and Z. Cheng

or synthesising correct invariants from an Event-B model remains untackled. It
would be ideal to add a new component to the existing Event-B platform to
automatically infer an invariant.

5 Future Direction

By now, we have used Cyclone on a few hybrid systems that are modelled using
Event-B including a water tank model [3]. Further, we have also collected and
designed about 220 sample/test cases from different areas such as program ver-
ification, graph searching and model checking for evaluating Cyclone. Cyclone
shows a great potential in performance and usability5 in handling these prob-
lems.

For the next milestones, (1) we are now investigating a technique that can
automatically translate an Event-B model to a Cyclone specification based on
a set of well-defined transformation rules. This technique would allow us to use
Cyclone as an oracle to automatically discover an invariant of an Event-B model.
(2) we are developing new modules and algorithms for Cyclone so that they can
also be used for reasoning non-linear systems in an efficient manner.

Acknowledgments. We thank Dominique Méry and the anonymous ABZ reviewers
for their helpful feedback on the paper. This work is supported by the Irish Research
Council and the Embassy of France in Ireland under the ULYSSES program, and by
the Agence Nationale de la Recherche under the grant ANR-17-CE25-0005.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

3. Su, W., Abrial, J.R., Zhu, H.: Formalizing hybrid systems with Event-B and the
Rodin platform. Sci. Comput. Program. 94 (2014)

4. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Program. 105 (2015)

5. Dupont, G., Ait-Ameur, Y., Singh, N.K., Pantel, M.: Formally verified architectural
patterns of hybrid systems using proof and refinement with Event-B. Sci. Comput.
Program. 216 (2022)

6. Cheng, Z., Méry, D.: A refinement strategy for hybrid system design with safety
constraints. In: Attiogbé, C., Ben Yahia, S. (eds.) MEDI 2021. LNCS, vol. 12732,
pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78428-7 1

7. Mammar, A., Afendi, M., Laleau, R.: Modeling and proving hybrid programs with
Event-B: an approach by generalization and instantiation. Sci. Comput. Program.
(2022)

8. Quesel, J.D., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model and prove
hybrid systems with KeYmaera: a tutorial on safety. Int. J. Softw. Tools Technol.
Transfer 18(1) (2016)

5 Cyclone is now a part of course at Maynooth University and used by 100+ students.

https://doi.org/10.1007/978-3-030-78428-7_1

	Verifying Event-B Hybrid Models Using Cyclone
	1 Introduction
	2 Current Architecture
	3 An Illustrative Example
	4 Experience Gained
	5 Future Direction
	References




