
When the Student becomes the Teacher⋆

Marie Farrell1 and Hao Wu2

1 Department of Computer Science, University of Liverpool, UK
2 Department of Computer Science, Maynooth University, Ireland

Abstract. Making formal methods accessible and appealing to future
software engineers is vital to promote their uptake in industry and to in-
crease participation in formal methods research. In this paper, we report
on our initial experience of both studying and, subsequently, teaching
the same software verification module at Maynooth University, Ireland.
By analysing on our own teaching and learning experiences along with
the students’ grades from the 2018–2019 academic year, we present our
four initial observations and two hypotheses that we intend to investigate
during the 2019–2020 academic year.

1 Introduction

Encouraging students to take an interest in formal methods has generally been
perceived as a difficult task [10, 8, 4, 5, 9, 18]. Though there has been some success
in convincing software developers to use formal methods, it is still quite chal-
lenging [20]. In order to increase the uptake of formal methods in industry, we
believe that we must first begin by convincing our students that formal methods
are useful and relevant for industrial use [13, 10, 17, 4].

In this short paper, we report on our experiences of both studying and teach-
ing the software verification module at Maynooth University. We provide some
analysis and discussion which we use as a basis for identifying ways to improve
this module and to capture the students’ interests.

We summarise our contributions as follows:

1. We report on our experience of teaching a formal methods module to un-
dergraduate students at Maynooth University. To this end, we analyse and
discuss this module in light of the associated exam results from the 2018–
2019 academic year.

2. We present our observations and form two hypotheses to be further investi-
gated to improve both the teaching and learning experience for this module.

The remainder of this paper is structured as follows. In Section 2, we provide
an overview of the formal verification module that we both studied and taught
at Maynooth University. We describe the assessment process for this module in
Section 3 where we briefly analyse the exam results from the 2018–2019 academic

⋆ This work is partially supported through EPSRC Hubs for Robotics and AI in Haz-
ardous Environments: EP/R026092 (FAIR-SPACE).



year. In Section 4, we reflect upon our own experience both as students and as
teachers of this module. We make four observations about the module’s current
status by combining our reflection with the analysis of the exam results described
in Section 3. Based on these observations, we form two hypotheses in Section
4.3 to be investigated during the current (2019–2020) academic year.

2 Module Overview

The software verification module (CS357) at Maynooth University aims to pro-
vide students with an understanding of both the theoretical and practical appli-
cations of formal software verification techniques3. The majority of the students
taking this module are third-year (Bachelor’s degree) students studying Com-
puter Science. For these students, this module is compulsory. This module is
optional for those studying General Science where Computer Science is a chosen
subject. This module assumes that the students have already taken modules in
basic Java programming and discrete mathematics (or equivalent).

This module runs over 12 weeks (2 lecture hours and 2 laboratory hours per
week) and covers a wide range of different topics. The topics that are covered
and the duration spent on each is outlined below:

1. Design by Contract (1 week) [15]
2. Natural Deduction Proofs and the Coq theorem prover (3 weeks) [3]
3. Hoare Logic (2 weeks) [12]
4. Spec# (2 weeks) [1]
5. SAT/SMT (2 weeks) [7]
6. Model Checking (2 weeks) [12]

On successful completion of this module, we expect the students to be able to:

1. Explain the role of verification in software engineering.
2. Create mathematically precise specifications.
3. Prove the correctness of programs using Hoare logic.
4. Use different tools to analyse and verify properties of specifications.

These four learning outcomes are reflected in the exam structure and contin-
uous assessment (CA) that we describe in the next section.

3 Assessment

In this section, we describe how this module is assessed. In particular, each stu-
dent’s final grade consists of 30% for continuous assessment (CA) with 70% for
the final examination. To obtain CA, each student is required to attend one 2-
hour laboratory session every week in order to complete their weekly assignment

3 Full module description is available at: http://apps.maynoothuniversity.ie/

courses/?TARGET=MODULE&MODE=VIEW&MODULE_CODE=CS357&YEAR=2020



Question Examined Topics Weight (marks)

Design by Contract
Q1 Propositional and Predicate Logic 25

Natural Deduction Proofs

Satisfiability
Q2 CNF Translation 25

DPLL (Pure literal, Unit clause and Unit propagation)

Q3 Hoare Logic 25

Basic SMT Encoding
Q4 Spec# Programming (Pre/Post conditions, Loop invariants) 25

Linear Temporal Logic Encoding

Table 1: There are four questions on the exam and each reflects different aspects
of the module as outlined in Section 2. These questions are designed to assess
the learning objectives described in Section 2.

and to get it graded by one of the tutors. These assignments, 11 in total, are
based on the material covered during the lectures each week. The first 3 assign-
ments focus on assessing basic understanding of natural deduction proofs using
Coq theorem prover. The next 2 assignments are based on Hoare Logic. The
remaining ones examine a range of verification tools such as Spec# and Z3. At
the end of term, the students must complete their final exam.

3.1 Exam Structure

The final exam is 2-hours long and pen & paper based. For full marks, stu-
dents must correctly answer three out of four questions on the paper. In the
case that a student answers all four questions, the best three are combined for
their final grade. The overall exam structure is outlined in Table 1. Each ques-
tion is weighted equally (25 marks) and focuses on examining a different topic.
For example, Q2 in Table 1 is designed to examine the basic knowledge of two
algorithms: Tseitin transformation [19] and DPLL [6], while Q3 is designed for
examining Hoare Logic [11].

3.2 Exam Results

Overall, a total of 92 students, during the 2018–2019 academic year, participated
in the module. In total, 23 of them failed resulting in a 25% failure rate. We
analyse the exam results on a per question basis as illustrated in Figure 1. For
each of these graphs, we plot the mark range (x-axis) against the percentage of
students that answered this particular question in the exam (y-axis).

We can see from Figure 1 that students performed the best on Q2. In fact,
Q2 was the most popular question with 88 out of 92 students attempting it. We
believe that this is due to the mechanical nature of Q2. Once a student masters
applying the corresponding rules, he/she is able to solve the basic problems on



(0-4) (5-9) (10-14) (15-19) (20-25)
Q1 Mark Range

0

10

20

30

40

50

%
 o

f S
tu

de
nt

s

(a) Mark distribution for Question 1.

(0-4) (5-9) (10-14) (15-19) (20-25)
Q2 Mark Range

0

10

20

30

40

50

%
 o

f S
tu

de
nt

s

(b) Mark distribution for Question 2.

(0-4) (5-9) (10-14) (15-19) (20-25)
Q3 Mark Range

0

10

20

30

40

50

%
 o

f S
tu

de
nt

s

(c) Mark distribution for Question 3.

(0-4) (5-9) (10-14) (15-19) (20-25)
Q4 Mark Range

0

10

20

30

40

50

%
 o

f S
tu

de
nt

s

(d) Mark distribution for Question 4.

Fig. 1: Marks distribution for four questions in Table 1.

the fly. Hence, Q2 was the most popular and highest scoring out of the four exam
questions.

Conversely, Q4 was the least popular. Only 24 out of 92 students attempted
this question. Q4 was designed to challenge students on the following topics:

– Encode a simple specification into SMT formulas.

– Write a Spec# program with the appropriate specifications corresponding
to a simple C# function that computes the sum of an integer array.

– Show basic SAT-encodings for reachability, safety and liveness properties.

We believe that this question was the least popular because it requires students to
understand low-level SAT/SMT encoding plus writing specifications for a piece
of code. In general, this type of question was not appealing to the students and
this was also observed by the tutors during the weekly laboratory assignments.



4 Reflecting on Teaching and Learning

In this section, we outline our own experience as both student and educator. We
reflect on this experience in light of the above examination results and outline
our observations. Based on these observations we develop two hypotheses in
relation to making this module more accessible and enjoyable from the students’
perspective.

4.1 Our Experience

We summarise our own experience of learning (from our time as students study-
ing this module) and teaching (based on the exam results described in Section
3) this module as follows:

Learning:

– The content of this module is generally challenging for students. Particularly,
identifying loop invariants, presenting Hoare logic proofs and understanding
low-level SAT/SMT encodings.

– Verification tools in general are not very reliable and the online versions of
the tools frequently stopped responding during the lab sessions. Furthermore,
the feedback from the tools is normally not very helpful in terms of figuring
out what to prove or where one went wrong in the specification.

– Practical applications of formal verification are not very clear to the students.

Teaching:

– It is very difficult to help the students to see the value in the module since
lots of these techniques are not widely used in industry.

– Many tools are not scalable for real-world examples and this makes it difficult
to demonstrate their usefulness to students.

– It is necessary to use a combination of slides and manually working through
examples on the whiteboard to explain the detailed computation steps to
the students.

We studied this module ourselves some years ago as students, and upon
reflection, we believe that the content of this module has always been quite chal-
lenging. Our experience of teaching this module (both as lab tutor and lecturer)
and students feedback forms have revealed that this perception has not changed.
Therefore, to encourage students, it is necessary to make improvements to this
module. In order to identify such improvements we first outline four observations
and then form two hypotheses in the next subsections.

4.2 Observations

By combining the examination results (Section 3) and our own experiences
above, we make the following four observations:



Observation 1. Automated verification tools are not appealing to the students
even though we described real world disasters that could have been avoided
by using formal methods [14]. The tools that we use in this module for auto-
mated reasoning are Spec# [1] and Z3 [7]. The students use the online versions
of Spec#4 and Z35 as part of their practical lab work. In the beginning, the
students found the click-button and go style interesting. However, they subse-
quently discovered that the feedback from the tool is not usually helpful for
fixing bugs in the source code. We believe that this makes the tools harder to
use and causes the students to lose interest. This also explains the reason for so
few students, 24 out of 92, attempting Q4 as described in Table 1.

Observation 2. Most of the students performed reasonably well on natural de-
duction proofs but not using the Coq interactive theorem prover [3]. For natural
deduction proofs, most of the students have already studied the material from
their discrete structures module. However, they feel it is difficult to find connec-
tions between the proofs worked out on a piece of paper and the corresponding
sequence of Coq commands although multiple live Coq proof sessions are given
throughout the lectures.

Observation 3. Tools we have developed during our research were not inte-
grated into this module. As such, the students were not given the opportunity
to learn about our work. A portion of our research focuses on using SAT/SMT
solving techniques to tackle problems from software engineering domains [21, 22].
Unfortunately, we never had chance to present our work due to time constraints.

Observation 4. Most of the students had mixed reactions to the Hoare logic
part of the module. In particular, the worked out whiteboard examples show-
ing how to discover loop invariants are difficult to digest for some students.
This usually involved interactive sessions during the lectures where the lecturer
and students worked together to solve the problems. However, others find the
whiteboard examples to be extremely helpful when studying Hoare Logic. These
students typically have a strong background in mathematics. We speculate that
these students are accustomed to whiteboard style teaching whereas pure com-
puter science students are more likely familiar with electronic slides.

These four observations reveal a number of shortcomings for this module.
In particular, Observations 1 and 2 point to a lack of tool usability. This is a
challenge for the formal methods community at large and can also hinder the
uptake of formal methods in industry. Observation 4 noted that the students
generally found Hoare logic difficult to grasp but this may also be exacerbated
by the students’ difficulty in using tools such as Spec#.

As a result of Observation 3, we have already started to integrate our research
tool into current teaching. For example, we introduced our own tool, MaxUSE

4 https://rise4fun.com/SpecSharp
5 https://rise4fun.com/Z3



[21, 22]6, into one of the classes and showed the students how to use it to find
conflicting class invariants for a UML class diagram. A number of students clearly
showed interest in the tool and would like to know more about its underlying
algorithms and theories.

Based on these observations, we derive two hypotheses for improving this
module in the next subsection.

4.3 Hypotheses

In this subsection, we develop two hypotheses that are based on the observations
derived in the previous subsection. We intend to use these hypotheses to guide
future improvements to be made to this module that we plan to investigate dur-
ing the current (2019–2020) academic year.

Hypothesis 1. The development of an online repository that contains a collec-
tion of real world examples would be useful for both teaching and illustrating
industrial uses of formal methods to the students. These examples could be
proved by either using automated or interactive verification tools such as Z3 and
Coq. We believe that this would create a strong connection between the theory
taught in the class and practical, real world applications. However, the challenge
here is that the examples collected or manually created should be small, but
detailed enough to be suitable for educational use. One way to begin is to design
and distribute a survey among the past students in order to identify the most
interesting and educational examples to be used in the class.

Hypothesis 2. A platform such as Tarski’s world that turns different kinds
of logical reasoning proofs into games would increase the interactions between
lecturers and students [2]. Hence, we believe that this is a good way to attract
students into studying formal methods. For example, a live coding session that
works with the students using SMT solvers to solve a Sudoku puzzle would be
much more enjoyable and interesting than simply elaborating on different SMT
constructs in the slides. However, there are two primary challenges that arise
from this: (1) it may not be possible for each student to bring a laptop to the
lecture, and, (2) students who miss the pre-setup steps may break the pace of
a lecture. One potential solution is for the lecturer to show the code (solving
games) running on their own machine and to upload the source code after the
lecture so that the students can try it in their own time. However, in this way the
interactions between the lecturers and students might be significantly reduced.

We have derived these hypotheses from our own experiences and the obser-
vations that we have made. We intend to investigate these hypotheses as future
work to see if they improve the student experience and the exam results.

6 https://github.com/classicwuhao/maxuse



5 Conclusions and Future Work

Teaching formal methods is quite challenging and making formal methods ap-
pealing to younger generations is very important for continuously expanding the
formal methods community in both industry and academia. In this paper, we
discuss our own experience of both studying and teaching the same software ver-
ification module at Maynooth University. Based on our experiences and analysis
of the exam results from the 2018–2019 academic year, we have derived four key
observations in Section 4.2, from which we construct two hypotheses (Section
4.3) that we will investigate during the current (2019–2020) academic year.

Furthermore, we plan to work with the education research group within the
department (at Maynooth University) to design interesting experiments in order
to figure out the best way of teaching formal methods and to let students have
fun with it. These experiments include interviewing students about specific top-
ics covered during the lectures, gathering and analysing real feedback from the
current academic year and using game based strategies to teach students to use
different verification tools [16]. We believe that these experiments can help us to
encourage the students to use formal methods/verification tools in their careers
after their university studies.

Since Maynooth University also offers a similar module at Master’s level, we
plan to investigate the corresponding exam results and compare them with those
presented in this paper. Furthermore, a much more detailed student feedback
form will be distributed at the end of the module for further analysis.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An
overview. In: Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, LNCS, vol. 3362, pp. 49–69. Springer (2005)

2. Barwise, J., Etchemendy, J.: Tarski’s World: Version 4.0 for Macintosh (Center for
the Study of Language and Information - Lecture Notes). Center for the Study of
Language and Information/SRI (1993)

3. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer (2010)

4. Cataño, N.: Teaching formal methods: Lessons learnt from using event-b. In: For-
mal Methods Teaching, LNCS, pp. 212–227. Springer (2019)

5. Creuse, L., Dross, C., Garion, C., Hugues, J., Huguet, J.: Teaching deductive verifi-
cation through frama-c and spark for non computer scientists. In: Formal Methods
Teaching, LNCS, pp. 23–36. Springer (2019)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7), 394–397 (1962)

7. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
LNCS, vol. 4963, pp. 337–340. Springer (2008)

8. Dean, C.N., Hinchey, M.G.: Teaching and learning formal methods. Morgan Kauf-
mann (1996)



9. Gallardo, M.d.M., Panizo, L.: Teaching formal methods: From software in the small
to software in the large. In: Formal Methods Teaching, LNCS, pp. 97–110. Springer
(2019)

10. Gibson, J.P., Méry, D.: Teaching formal methods: Lessons to learn. In: IWFM.
Citeseer (1998)

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

12. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About
Systems. Cambridge University Press (2004)

13. Jaume, M., Laurent, T.: Teaching formal methods and discrete mathematics. In:
1st Workshop on Formal Integrated Development Environment, vol. 149, pp. 30–
43. EPTCS (2014)

14. Jazequel, J.., Meyer, B.: Design by contract: the lessons of ariane. Computer 30(1),
129–130 (1997)

15. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall (1988)
16. Moller, F., O’Reilly, L.: Teaching discrete mathematics to computer science stu-

dents. In: Formal Methods Teaching, LNCS, pp. 150–164. Springer (2019)
17. Oliveira, J.N.: A survey of formal methods courses in european higher education.

In: Teaching Formal Methods, LNCS, vol. 3294, pp. 235–248. Springer (2004)
18. Rozier, K.Y.: On teaching applied formal methods in aerospace engineering. In:

Formal Methods Teaching, LNCS, pp. 111–131. Springer (2019)
19. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies

in Mathematics and Mathematical Logic 2, 115–125 (1968)
20. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice

and experience. ACM computing surveys (CSUR) 41(4), 19 (2009)
21. Wu, H.: Finding achievable features and constraint conflicts for inconsistent meta-

models. In: 13th European Conference on Modelling Foundations and Applications,
pp. 179–196 (2017)

22. Wu, H.: Maxuse: A tool for finding achievable constraints and conflicts for incon-
sistent UML class diagrams. In: Integrated Formal Methods, LNCS, vol. 10510,
pp. 348–356. Springer (2017)


