
Finding Achievable Features and Constraint

Conflicts for Inconsistent Metamodels

Hao Wu

Department of Computer Science,
National University of Ireland, Maynooth

haowu@cs.nuim.ie

Abstract. Determining the consistency of a metamodel is a task of gen-
erating a metamodel instance that not only meets structural constraints
but also constraints written in Object Constraint Language (OCL). Those
constraints can be conflicting, resulting in inconsistencies. When this
happens, the existing techniques and tools have no knowledge about
which constraints are achievable and which ones cause the conflicts. In
this paper, we present an approach to finding achievable metamodel fea-
tures and constraint conflicts for inconsistent metamodels. This approach
allows users to rank individual metamodel features and works by reduc-
ing it to a weighted maximum satisfiability modulo theories (MaxSMT).
This reduction allows us to utilise SMT solvers to tackle multiple ranked
constraints and at the same time locate conflicts among them. We have
prototyped this approach, incorporated it into an existing modelling tool,
and evaluated it against a benchmark. The preliminary results show that
our approach is promising and scalable.

1 Introduction

The metamodelling approach plays a key role in Model-Driven Engineering
(MDE), it paves the way for enabling many other MDE approaches such as
model transformation, language engineering and business process modelling [1–
3]. A metamodel captures the syntax for a set of models and allows users to
form a design at a higher level of abstraction. A valid model or an instance of a
metamodel conforms to all of the constraints imposed by its features. These con-
straints vary according to the metamodel structural features such as multiplici-
ties for an association to class invariants written in Object Constraint Language
(OCL). Then the task for checking consistency of a metamodel becomes finding
a valid instance. However, this is a challenging task since an instance needs to
meet all kinds of constraints defined over that metamodel. Recent studies have
shown that this task can be tackled via well-engineered constraint solvers [4–6].

Many metamodels in practice are not consistent due to the conflicts in a
number of constraints imposed by different features such as the multiplicities of
an association or class invariants. These conflicts could be caused by user errors
or features being over-constrained in the design. When this happens, current
modelling tools terminate and report inconsistent metamodels, or are unable

1

to generate a valid instance. However, in many cases users may wish to know
how many metamodel features can be fulfilled in their current design and which
constraints cause the conflicts, then use this information to further refine their
metamodels. For example, a user may be interested in finding the minimum
number of features that cause conflicts in a metamodel, and fix them in a new
design. In other cases, users could use their domain specific knowledge to rank
individual features and look for a model that could fulfill as many as features
possible.

In this paper, we present an approach to finding two kinds of information
when a metamodel is inconsistent. 1) The set of achievable metamodel features
based on their rankings. 2) The set of structural constraints or class invariants
that cause conflicts. In our approach, both kinds of information are computed
using an SMT solver. The use of an SMT solver has several advantages. First,
we can perform fast satisfiability checks on not only pure boolean constraints
but also complex structures with a number of numeric constraints. Second, it
does not introduce a substantial implementation overhead since an SMT solver
is treated as a black-box engine.

Contributions. The contributions of this paper can be summarised as follows:

1. We present a simple annotation that allows users to rank individual meta-
model features (Section 3.1), and a reduction to weighted MaxSMT problem
so that we can compute the set of achievable metamodel features based on
their rankings (Section 3.2).

2. Inspired by the work of Liffiton and Sakallah on extracting conflicts [7], we
present a novel technique for finding constraint conflicts by solving the set
cover problem (Section 3.3).

3. We have implemented a prototype tool, tapped it into an existing modelling
tool and evaluated it against a benchmark for scalability (Section 4).

2 A Running Example

In this section, we provide a small example that will be used throughout this
paper to illustrate our approach. This example is shown in Figure 1, represent-
ing a metamodel that models a real world example of students in a university
choosing multiple modules to study. This metamodel is enriched with 8 class
invariants (inv1 to inv8). Each invariant is ranked by using an integer value.
For example, each student must have a unique id number (inv4), and can only
choose modules that are in their year (inv5). In this example, we use numbers 1
to 6 to distinguish a student’s year, and students that are in year 6 are consid-
ered as research students. Thus, a university has some non-research and research
students (inv6).

This metamodel is inconsistent and has a maximum number of 6 achievable
invariants. This is due to the two conflicts among the invariants in Figure 1.
The first conflict is obvious and it is caused by the invariants inv1 and inv2 de-
fined for the age attribute. However, the second conflict is not easy to identify.
This conflict is caused by the invariants that there must exist some research and

2

non-research students (inv6) choosing some modules (inv7) in their correspond-
ing year (inv5). But there are modules that are only available for non-research
students (inv8: between year 1 and 5).

However, in the real world each individual invariants may be treated differ-
ently based on user’s domain specific knowledge. For example, a university may
consider a registration procedure that students choosing modules in their corre-
sponding year (inv5) is more important than choosing some modules (inv7). In
this context, a maximum number of 6 invariants is achievable with the preference
that inv5 is more favourable than inv7. Therefore, by allowing more favourable
constraints to be achieved first is more suitable for users wishing to distinguish
priorities among different invariants.

Fig. 1. An example of a ranked metamodel describing how a student can choose
multiple modules to study. The ranks are highlighted in the shaded area. Our
approach concludes that this metamodel has a maximum number of 6 achievable
invariants and 2 conflicts:(inv1, inv2) and (inv5, inv6, inv7, inv8).

3 The Approach

Figure 2 provides an overview workflow of our approach. Briefly, this is viewed
as three steps. First, users use a simple annotation to rank individual metamodel
features. The approach then determines the consistency of a metamodel. If there
is at least one class that cannot be instantiated, then all metamodel features

3

along with OCL constraints will be reduced to a weighted MaxSMT problem and
solved by an SMT solver. The returned solution is a set that contains all possible
ways of maximising the number of achievable metamodel features based on their
rankings. Finally, to find constraint conflicts among all metamodel features, the
approach treats all features equally including OCL constraints, formalises them
into the set cover problem and solves it by using an SMT solver.

Fig. 2. An overview of our approach.

3.1 Annotation

We provide a simple annotation for users to specify a rank on individual meta-
model features. This annotation has the basic form:‘@Rank = c’, where c ∈ Z

+

denoting a metamodel feature is ranked via an non-negative integer c. Currently,
we allow users to rank classes, associations and invariants. If a metamodel has a
conflict, then any ranked features cause that conflict might be switched off dur-
ing the search for the achievable features. We consider all metamodel features
ranked with integer c as soft features. A soft feature with higher ranking is more
favourable to be selected than a feature with lower ranking during the search.
For example, inv5 in Figure 1 is more likely to be chosen compared to inv7. On
the other hand, if a feature is not ranked, then it is a hard feature that must
not be ignored during the search. For example, inv8 in Figure 1 must hold, no
matter what. Therefore, a user could specify a set of soft and hard features over
a metamodel by using this annotation.

Sometime users wish to use a single ranking criteria to treat a group of class
invariants. For example, all invariants defined for a specific class are equally
important. In this case, another type annotation:‘@Name{Rank = c}’ is in-
troduced, where Name is an identifier for the annotation, and c ∈ Z

+. For
example, in Figure 1 the annotation ‘@StudentRank’ specifies that every invari-
ant defined under the class Student is ranked using automatic ranking. However,
users may override current ranking criteria by specifying a different rank through
‘@Rank = c’. For example, an automatic ranking is initially specified for inv5
and inv7 but it is overwritten by the new values of 6 and 5. The remaining
invariants are ranked using automatic ranking.

4

Ranking Criteria. A metamodel feature can be ranked in two ways: (1) Users
rank an individual metamodel feature into a soft feature based on their domain
specific knowledge1. (2) In situations, where users feel they can let the program
automatically handle a particular feature for them, an automatic ranking criteria
is provided. In default settings, all metamodel features are initially treated as
hard features. However, users may override default settings by using the keyword
‘automatic’. All features annotated with ‘automatic’ are assigned a specific value
internally and automatically calculated as follows.

Automatic Ranking. The automatic ranking for a class is calculated based
on the number of attributes and operations (including those inherited from an
abstract class) defined within. This is because a class that contains more at-
tributes and operations typically describes more information about a system
than a class with fewer attributes and operations. For an association, it is cal-
culated by adding up the rank defined on each association end2. For a class
invariant, we calculate the size of its abstract syntax tree (AST). The larger size
of an invariant’s AST, the more likely a stricter constraint will be imposed on a
metamodel3. For example, the invariants (except for inv2 and inv7) defined for
Student class are automatically assigned with a rank based on the size of their
ASTs. In Figure 3, we can see that inv3 is assigned with a value of 9.

Fig. 3. The abstract syntax tree for inv3 from Figure 1 has a total of 9 nodes.

3.2 Reducing to Weighted MaxSMT

Our reduction to SMT is a procedure that traverses a set of soft features de-
fined on a metamodel and automatically generates a set of SMT formulas. Each
generated formula consists of two parts.

The first part is an SMT encoding of a specific metamodel feature4. Currently,
the formula in this part is similar to the encoding of metamodel features into first-
order logic (FOL) [8]. We support an encoding of a variety of metamodel features

1 Note that a metamodel could be ranked in 3 different scenarios: (1) Partially ranked
(a mixture of soft and hard features). (2) Totally ranked (soft features only). (3) Not
ranked (hard features only).

2 Currently, we assume that each association end is owned by a class.
3 An invariant could be written in multiple ways. Here, we assume all class invariants
were written in a consistent way. For example, using self to constrain attributes and
allInstances() for quantifiers and navigations.

4 Note that for this part a user could still use an existing SMT encoding, no changes
are required.

5

such as classes, inheritance, associations, and class invariants. For invariants
written in OCL, we also support navigation, nested quantifiers and operations
on generic collection data types such as include. These encodings are similar to
those used in [9]. Currently, we do not support string operations.

The second part of the formula is central to our approach. Using the formulas
generated for this part, we are able to apply a rank on a specific metamodel
feature when the constraint imposed by that feature is achievable.

Given a total k number of soft features, we let Fi be an SMT formula that
encodes the ith soft feature in a metamodel. We now introduce an integer type
auxiliary variable Auxi whose range is {0, 1}. We then generate Formula 1. The
idea behind this formula is that we associate each Fi with an auxiliary variable
so that it is equisatisfiable to the original Fi. This is ensured by part a and part b

in Formula 1 since both parts can not be satisfiable simultaneously. Therefore,
we can check whether a feature encoded by formula Fi is achievable via testing
the satisfiability of Formula 1.

(k∧

i=1

Fi ∨
(

Auxi = 1
︸ ︷︷ ︸

part a

))

∧

((k∑

i=1

Auxi

)

= 0

︸ ︷︷ ︸

part b

)

(1)

Now let V Wi be an SMT encoding for a user specified rank Wi of the ith

soft feature. Note that V Wi ≥ 0 (no negative value is allowed). We now generate
Formula 2. The implication of this formula is built on Formula 1. If Formula 1
is satisfiable, then each Auxi = 0 and Fi must also be satisfiable. This means
that the constraint imposed by ith soft feature can be achieved. Thus, we must
assign an integer constant c to V Wi to indicate that the corresponding rank is
achieved. Otherwise, there must exist some Fis that are not satisfiable. In this
case, we simply disable the corresponding rank by assigning 0 to V Wi .

k∧

i=1

(((
Auxi = 0

)
⇒
(
V Wi = c

))

∧
((

Auxi = 1
)
⇒
(
V Wi = 0

))
)

,where c > 0.

(2)

Finally, we form a weighted MaxSMT problem by generating Formula 3. We
generate this formula only when Formula 1 is not satisfiable. This is because if
Formula 1 is satisfiable, then a metamodel is consistent. Intuitively, we know
some Fis are not satisfiable, and both part a and part b from Formula 1 cannot
be satisfiable at the same time. Now to make Formula 1 become satisfiable,
we remove part b (Formula 1) and rewrite it as part c (Formula 3). This forces
some of the auxiliary variables (Auxi in Formula 1) to be evaluated to 1. In other
words, we fix some number m and if there are some features that cannot be met,
then the associated auxiliary variables (Auxi) must be evaluated to 1 in order
to be satisfiable. Thus, in this way we can work out m number of constraints
imposed by metamodel features that cannot be fulfilled. In the meantime, we
also check whether it is possible to achieve a total of rank of c based on the
remaining number of metamodel features (part d in Formula 3). If c is the

6

maximum number we can find to make Formula 3 satisfiable, then c is a solution
to our weighted MaxSMT problem.

((k∑

i=1

Auxi

)

= m

︸ ︷︷ ︸

part c

)

∧

((k∑

i=1

V Wi

)

= c

︸ ︷︷ ︸

part d

)

,where 1 ≤ m ≤ k, 1 ≤ c ≤
k∑

i=1

Wi.

(3)

Now that we have formed weighted MaxSMT problem from ranked meta-
model, the goal here is to find a maximum total rank from all ranked metamodel
features, namely weighted MaxSMT solution. To reduce the number of satisfia-
bility checks, we employ a binary-search based algorithm to search for this maxi-
mum total rank. This algorithm iteratively asks an SMT solver to solve Formula
3 and look for an integer that could maximise the rank. If the maximum rank is
found, the algorithm then enumerates all possible ways of achieving this value by
blocking all previous successful assignments until no more weighted MaxSMT so-
lutions can be found. Note that if a metamodel contains hard features only, then
the algorithm returns a maximum number of achievable metamodel features.

3.3 Finding Constraint Conflicts

In [7], the authors reveal that the set of conflicts among SAT formulas can be
captured by the set cover problem5. Inspired by their work, we directly use this
information to find constraint conflicts of metamodel features by further solving
the set cover problem using an SMT solver. A conflict among a set of metamodel
features essentially is a minimal unsat core. This core is a set of unsatisifiable
SMT formulas and all proper subsets of the core are satisfiable. Though only
few of the SMT solvers provide unsat core extraction, such extraction is not
guaranteed to find all minimal unsat cores [10]. For example, the Z3 SMT solver
only finds one conflict (inv1, inv2) for the example in Figure 1.
Relationship to the Set Cover Problem. Formally, a set cover problem can
be defined as: given a finite universe U = {S1, S2, ..., Sn} and a collection of
subsets I1, I2, ..., Ik ⊆ U , find a sub collection (set) of Iis, i ⊆ {1, 2, ..., k} such
that

⋃
Ii = U . The sub collection is minimum if it uses fewest Iis to cover U

and such collection is called a minimum set.
To illustrate that the set cover problem captures the conflicts among the set

of metamodel features. We use the example from Figure 1 except that we treat
all invariants (inv1 to inv8) equally this time and solve them to derive a total of 8
different solutions (S1, S2, ..., S8), as shown in Figure 4. Each solution describes
a way of maximising the number of class invariants in Figure 1, namely they
are MaxSMT solutions. A matrix is then formed with each row describing one
solution and each column denoting a class invariant from Figure 1. For example,
in Figure 4 row S1 = {I2, I5} denotes a way of achieving 6 numbers of invariants
by deactivating 2 invariants inv2 and inv5 (in Figure 1). In the first row, we use

5 The hitting set problem is an instance of the set cover problem.

7

MaxSMT Solutions I1 I2 I3 I4 I5 I6 I7 I8
S1 = {I2, I5} 0 1 0 0 1 0 0 0
S2 = {I2, I6} 0 1 0 0 0 1 0 0
S3 = {I2, I7} 0 1 0 0 0 0 1 0
S4 = {I2, I8} 0 1 0 0 0 0 0 1

S5 = {I1, I5} 1 0 0 0 1 0 0 0
S6 = {I1, I6} 1 0 0 0 0 1 0 0
S7 = {I1, I7} 1 0 0 0 0 0 1 0
S8 = {I1, I8} 1 0 0 0 0 0 0 1

Fig. 4. An example that illustrates how the set cover problem captures the
conflicts among metamodel features. For example, a conflict between inv1 (I1)
and inv2 (I2) in Figure 1 can be identified here, since I1 covers {S5, S6, S7, S8}
and I2 covers {S1, S2, S3, S4}.

a 1 to mark these two invariants that can not be achieved, and 0 to mark the
remaining invariants that can be achieved.

To find conflicts among these invariants, consider each column Ii ⊆ {S1, ..., S8}
that covers only rows marked with a 1 in that column. We say an Si is covered
if and only if at least one of the elements is covered. For example, column I1
covers row S5, S6, S7, and S8, while column I3 covers no rows. A conflict can
now be identified by finding a sub collection (set) of Iis such that the union of
Iis covers all rows (S1 to S8). Such a set is a minimal unsat core: it is minimal in
the sense that the removal of any element from the set results in at least one of
the rows becoming uncovered. For example, set {I1, I2} forms a minimal unsat
core and thus inv1 and inv2 (from Figure 1) conflict with each other. Another
conflict can be identified by forming the set {I5, I6, I7, I8}.

Solving the Set Cover Problem. In general, finding one solution to the
set cover problem is NP-complete, and finding a minimum set is NP-hard [11].
To tackle this problem, we present a novel technique that allows us to find all
metamodel constraint conflicts via SMT solving. This technique first computes
a set of achievable metamodel features (MaxSMT solutions) and formulates an
m×n matrix M similar to the one in Figure 4. Then it automatically generates
a set of SMT formulas capturing the set cover problem and uses an SMT solver
to find metamodel constraint conflicts.

The core idea of this technique is to formalise the set cover problem into a
set of numeric constraints so that we can utilise SMT solvers’ well-engineered
arithmetic reasoning engine to quickly explore the search space. To form such
constraints, we first define this m× n matrix M in Figure 5:

– each entry aij ∈ {0, 1} is an element from a set (Si and Ij), and 1 denotes
that aij ∈ Si ∧ aij ∈ Ij , otherwise the entry is not in both Si and Ij .

– each Si denotes a set of metamodel features that can not be achieved.
– each Ij denotes a subset of Sis in the jth column, depending on whether

aij = 1.

8

M =










I1 I2 I3 ... In

S1 a11 a12 a13 . . . a1n
S2 a21 a22 a23 . . . a2n
S3 a31 a32 a33 . . . a3n
...

...
...

...
. . .

...
Sm am1 am2 am3 . . . amn










Fig. 5. A matrix M representing the set cover problem.

Let mappings Si 7→ V Si , Ij 7→ V Ij and aij 7→ V aij be SMT encodings of Si, Ij
and each entry aij of M respectively, where V Si , V Ij and V aij are SMT integer
variables whose range are {0, 1}. We now generate a set of SMT formulas which
captures the set cover problem. The range value 1 denotes that an element or a
set is selected (covered) while 0 indicates that it is unselected.

We first generate Formula 4 stating that Si is selected (covered) if one of the
aijs in ith row is selected. Otherwise if all aijs (in ith row) are not chosen, then
Si can not be covered. For example, in Figure 4, we say S1 can be covered by
either the entry in the 1st row and 2nd column (a12) or another entry in the 1st
row and 5th column (a15), as both of them are set to 1 (S1 = {a12, a15}).

m∧

i=1

(((n∨

j=1

aij∈Si

V aij = 1
)

⇒
(

V Si = 1
))

∧

((n∧

j=1

aij∈Si

V aij = 0
)

⇒
(

V Si = 0
))
)

(4)

Intuitively, Formula 5 encodes a constraint indicating that if the subset Ij is
selected, then all of its elements must be selected as well. Otherwise no elements
in Ij can be selected. This formula guarantees that either Ij is chosen or it is not
chosen at all. This rules out the possibility of a partial selection of Ij ’s elements.
This is because when a subset is not chosen (used), then none of the elements
of it should be selected. This condition is enforced by using a conjunction to
connect all elements in Ij to make sure that none of its elements are selected.
For example, if subset I5 in Figure 4 is not chosen, then its two elements at the
5th column, marked as 1 (a15 and a55) are also not selected (I5 = {a15, a55}).

n∧

j=1

(((

V Ij = 1
)

⇒
(m∧

i=1
aij∈Ij

V aij = 1
))

∧

((

V Ij = 0
)

⇒
(m∧

i=1
aij∈Ij

V aij = 0
))
)

(5)

Finally, we generate an integer equality shown in Formula 6 describing the re-
striction that every Si must be covered (part a) by some subsets Ijs (part b).
To find all possible combinations of subsets (Ij) that cover Sis, we use the algo-
rithm in Figure 6 to iteratively ask an SMT solver to find an answer for part b,
starting from 1 subset to n subsets. If this equality is satisfiable (line 5), we

9

then have a solution to the set cover problem with k subsets covering all Sis.
Otherwise, there is no solution to the set cover problem with k subsets. Finally,
we interpret those V Ij s assigned with 1 as the chosen subsets (line 6) and find
the next solution by blocking all previous solutions (line 7).

(
(m∑

i=1

V Si

)

= m

︸ ︷︷ ︸

part a

)

∧

(
(n∑

j=1

V Ij

)

= k

︸ ︷︷ ︸

part b

)

, where 1 ≤ k ≤ n. (6)

Input : A matrix M representing metamodel constraint conflicts as the
set cover problem.

Output: A set s containing all solutions to the set cover problem
including all minimum sets.

1 k← 1
2 s← ∅
3 Solver.add(Formula 4 ∧ Formula 5 ∧ Formula 6[part a])
4 while k ≤ n do

5 while SMTSolve
((n∑

j=1

V Ij
)
= k

)

= SAT do

6 s← s ∪ Interpret(V Ij)
7 Solver.add(BlockingFormula)

8 end

9 k ← k + 1

10 end

11 return s

Fig. 6. An algorithm that iteratively calls an SMT solver and returns all solu-
tions to the set cover problem. The first set of solutions found by this algorithm
must be the set containing all minimum sets since k starts from 1.

4 Implementation and Evaluation

We have prototyped the approach described in Section 3 into a tool called
MaxUSE6 and incorporated it into the exisiting USE modelling tool [12]. We
choose USE mainly because it is a widely used modelling tool that has its own
specification language that we can alter for our requirements. We modified its
grammar and abstract syntax trees so that it now reads in a metamodel that is
fully or partially ranked. It traverses a metamodel and automatically generates a
set of SMT2 formulas [13]. MaxUSE currently uses Z3 as its solving engine [10].
It incrementally solves these formulas and interprets each successful assignment
as a solution. Our implementation is approximately 7000 lines of Java code.

6 available at https://github.com/classicwuhao/maxuse

10

4.1 Evaluation

Forming Benchmark. To extensively evaluate MaxUSE’s capability, we first
collect a group of metamodels (Group A in Table 1) from [14], and use them
as candidate metamodels. For each candidate metamodel, we calculate a con-
figuration in terms of its number of classes, associations (different multiplici-
ties), invariants, conflicts, navigations, quantifiers, logic/arithmetic operators,
and breadth/depth of inheritance trees. We then develop a generator that can
generate USE specifications based on different sized configurations. This gener-
ator is approximately 2100 lines of Java code. We use this generator to generate
another four groups (Group B, C, D and E in Table 1) of metamodels using the
configurations calculated from the metamodels in Group A. Currently, MaxUSE
supports OCL constructs used in these metamodels.7. For each group, we gener-
ate 5 metamodels ranging from small to large size. Finally, we randomly inject
a number of conflicts into each metamodel and gather them as a benchmark
as shown in Table 1. For example, for Group D we use a configuration that
allows us to specify the number of diamond shapes and OCL constraints over
an inheritance tree. This is because we use the DS metamodel from Group A
as a candidate and this metamodel contains an OCL constraint over a diamond
shaped inheritance tree. Therefore, every metamodel in Group D also has a
number of constraints over this property based on its size.
Performance Evaluation. We evaluate MaxUSE on an Intel(R) Xeon(R) ma-
chine with eight 3.2GHz cores. However, our current implementation uses only
one core. Table 1 records MaxUSE’s performance against different sized meta-
models. For each group in Table 1, we first randomly rank each metamodel
including the use of automatic rankings and run MaxUSE to find one solution.
We then equally rank each metamodel and ask MaxUSE to find all possible so-
lutions including conflicts. This is because an equally ranked metamodel more
likely to have multiple solutions. All the performances are recorded in the ‘Sin-
gle’ and ‘All’ columns in Table 1. We observe that MaxUSE takes less than one

second to determine whether a metamodel is consistent or not, and find the max-
imum weight and conflicts within a reasonable amount of time in most cases.
The longest time taken by MaxUSE is approximately 8 hours to get 174 solu-
tions for the D5 metamodel. In general, MaxUSE finds all conflicts much faster
than finding all weighted MaxSMT solutions. This is because searching for an
optimal solution requires significant computation by Z3. Once all solutions are
found, MaxUSE can utilise them to solve the set cover problem much faster. In
some cases, MaxUSE could not find solutions. This is mainly due to Z3 spending
a significant amount of time on solving a large number of formulas combining
nested quantifiers and inequalities. For example, for the E5 metamodel, Z3 was
stuck with a particular value and could not progress to next possible optimal
value within 9 hours. In general, it is an extremely challenging task for any algo-
rithms to find an optimal value for such a large number of complicated formulas.
This is because the nature of this particular optimisation problem typically has

7 MaxUSE cannot handle the OAI metamodel due to recursive structures. Instead, we
add the SM metamodel into Group A (similar to Figure 1 in Section 2).

11

Number of Rank Single (sec) Mix Ranked All (#/sec) Eq Ranked
Classes Assocs Invs Formulas Max Total Solution Conflict Solution(s) Conflict(s)

G
ro

u
p

A CS 3 1 6 19 15 15 NA NA NA NA
WR 2 2 7 33 36 40 4.01 0.16 1/3.53 1/0.5
DS 4 0 1 16 14 16 0.14 0.19 2/0.14 1/0.89

OAI† 1 1 7 NA NA NA NA NA NA NA
SM 3 1 8 31 79 91 0.33 0.08 8/0.44 2/0.15

G
ro

u
p

B B1 13 5 27 169 490 498 3.97 0.43 2/2.22 2/0.44
B2 24 9 45 285 521 556 15.90 0.16 12/22.53 5/0.83
B3 33 14 68 420 792 821 31.49 0.58 6/54.89 5/11.92
B4 46 15 90 539 620 622 67.37 0.22 2/100.87 2/1.42
B5 57 19 136 729 881 894 560.12 1.45 24/1609.12 6/3.48

G
ro

u
p

C C1 13 5 29 171 237 268 5.59 0.05 12/18.49 7/0.59
C2 24 11 43 276 470 478 15.76 0.83 4/14.70 2/0.84
C3 35 17 66 418 570 581 59.46 0.07 1/68.79 2/1.12
C4 46 15 98 549 605 630 342.98 1.50 4/226.05 4/1.66
C5 57 15 156 765 1004 1045 2853.65 0.57 72/5467.75 11/5.49

G
ro

u
p

D D1 13 2 22 136 171 189 3.03 0.17 1/4.17 6/0.46
D2 26 9 47 294 259 329 17.56 0.23 1/23.09 13/0.91
D3 33 3 61 329 520 596 21.74 0.42 6/34.74 9/0.98
D4 46 9 101 525 452 651 68.17 0.39 3/90.08 34/1.24
D5 56 18 166 805 1089 1291 15904.21 2.33 174/29368.16 46/19.22

G
ro

u
p

E E1 10 6 31 162 69 72 6.26 0.07 1/7.38 1/0.32
E2 15 12 39 224 217 233 83.36 0.08 2/66.48 4/0.55
E3 30 18 37 312 238 243 392.22 0.729 1/47.75 1/0.71
E4 18 18 105 511 483 515 405.51 0.68 7/5959.61 20/3.90
E5∗ 18 18 167 698 NA 415 NA NA NA NA

Table 1. The benchmark for evaluating MaxUSE. ‘Formulas’ denotes the number of SMT2 formulas generated. ‘Rank’ denotes the
achieved maximum rank (‘Max’) out of a total rank distributed (‘Total’). ‘Single’ and ‘All’ denote the time (in seconds) spent by
MaxUSE on finding a single and all possible solutions respectively. ‘#/sec’ means that the number of solutions and seconds used. ‘†’
indicates that MaxUSE determines that a metamodel is consistent. ‘∗’ denotes that MaxUSE cannot find solutions within 9 hours.

1
2

a massive search space.
Quality of Computed Constraint Conflicts. For the conflicts found in these
metamodels from the benchmark in Table 1, we compare them against actual
injected conflicts to assess how accurate they are. The injected conflicts covers
a wide range of different metamodel features including multiplicities on asso-
ciation ends, different type of attributes and inheritance relationships among
multiple classes. We classify our comparison results as either “exact”, “near” or
“miss” and record them into Table 2. Here,“exact” means that MaxUSE finds
conflicts that match exactly with injected conflicts. In other words, each one
(set) is minimal and removal of any members can make a metamodel become
consistent. “near” means that MaxUSE is able to identify all conflicts that are
close enough to the injected ones. We consider they are “near” because each re-
ported conflict is a slightly larger set containing those injected ones as a subset.
For example, MaxUSE may list the a class containing conflicted invariants as
a part of the returned conflicts. Thus, users could easily understand this infor-
mation and use this in a latter stage for debugging or fixing conflicts. “miss”
indicates that MaxUSE returns at least one “conflict” that is not related to any
of those injected conflicts. We suspect that this is probably caused by heuristic
algorithms used internally in Z3. Despite this inaccuracy, we believe that the
results here show the potential of our approach to finding constraint conflicts for
inconsistent metamodels.

Group A Group B Group C Group D Group E
CS NA B1 exact C1 near D1 exact E1 near
WR exact B2 near C2 exact D2 near E2 near
DS exact B3 exact C3 near D3 exact E3 exact
OAI NA B4 near C4 near D4 near E4 miss
SM exact B5 exact C5 near D5 near E5 NA

Table 2. Quality of computed constraint conflicts for metamodels in Table 1.

Lessons Learnt. From the evaluation results, we have learned three important
lessons:
1. MaxUSE can maximise the number of achievable features and pinpoint con-

flicting constraints without the need for manual interactions. However, in
some cases when Z3 is unable to handle formulas, an interactive mode is
necessary. For example, when Z3 could not solve formulas generated for the
E5 metamodel within a specified time frame, we pause MaxUSE and man-
ually choose a possible optimal value. MaxUSE is then able to resume the
search. However, selecting such a value is quite tricky and requires that one
has knowledge about how things work inside the solver.

2. In terms of scalability, the number of ranked features is proportional to the
solving time of MaxUSE. Additionally, we suggest that one could gain better
performance by ranking individual metamodel features into hard features or
using a set of relatively smaller ranks. For example, if a metamodel has 100
features one may consider to rank them using a range of integers from 1 to
100 rather than choosing from 101 to 200.

13

3. Computing all constraint conflicts sometimes can be significantly more ex-
pensive than finding one conflict since there could be an exponential number
of them. In this case, we find it is necessary to let users decide when to stop
MaxUSE for enumerating all constraint conflicts. This is because some con-
straint conflicts are not independent. Therefore, the dependent conflicts can
be used to identify other conflicts without exhaustive enumeration. In the
future, we plan to address this issue and enhance our algorithm for finding
constraint conflicts.

4.2 Threats to Validity

The major threat to external validity concerns the benchmark we form in Table
1. This benchmark is based on the metamodels collected from [14]. Since these
metamodels do not cover the full set of OCL constructs, this introduces a gap
between our implementation and full OCL constructs. We acknowledge that
the evaluation results of this benchmark only give us a preliminary assessment
of MaxUSE. In the future, we plan to cover more OCL constructs including
operational constraints and string operators.

The most significant threat to internal validity concerns the performance of
MaxUSE which is mainly dependent on the Z3 SMT solver. In some cases, the
first run of Z3 fails to find solutions. However, further runs typically resolve
this issue. This introduces an additional performance overhead. We surmise that
this is caused by the heuristic algorithms used in Z3. In the future, we plan to
overcome this by plugging in multiple SMT solvers and allow users to switch
among them for the best performance.

5 Related Work

The majority of the research in metamodel/UML class diagram-based reason-
ing/verification concentrates on answering the question [9, 15, 6, 16, 5, 17, 18]:
whether a metamodel is consistent or not. We focus on the situation when a
metamodel is not consistent, then what information we should give back to
users to help them refine their metamodels. We believe that providing the maxi-
mum number of achievable features and finding constraint conflicts among them
is useful for users to further refine their metamodels. Moreover, this paper also
demonstrates the feasibility and scalability of tackling ranked metamodel fea-
tures in an existing modelling environment by introducing SMT solving.

Much research work has sought to formalise metamodels or UML class di-
agrams into different types of logics [19–22, 9, 8, 23–30]. With recent advances
in constraint solving, SAT/SMT solvers have been widely adapted to verifying
metamodel/UML class diagrams. Among them, Büttner et al [8] and Clavel et
al [9, 28] directly map a metamodel and its OCL constraints into first-order logic
that can be handled by SMT solvers. Büttner et al use the Z3 SMT solver to
verify the correctness of the ATL transformation, while Clavel and Dania use
Prover 9 and Z3 to check the satisfiability of OCL constraints. We use a similar
idea to encode the metamodel and OCL constraints, but differ by solving ranked
OCL constraints and the set cover problem. By introducing ranked features to

14

a metamodel and solving the set cover problem, users are able to maximise the
number of features based on their domain specific knowledge and find constraint
conflicts.

Cabot et al. propose a detailed systematic procedure that uses constraint
programming to program UML/OCL class diagrams into a Constraint Satis-
faction Problem (CSP) [31, 32, 16]. The main advantage is that CSP provides
a high-level language so that a particular constraint problem is programmable.
Their approach can check a variety of correctness properties including weak and
strong satisfiability by generating a different number of instances for every class.
Instead of presenting an encoding of metamodel and OCL constraints, our work
focuses on reducing a set of ranked metamodel features to a weighted MaxSMT
problem and finding a maximum number of achievable features and conflicts
at the same time. Further, our approach presented in this paper can be easily
incorporated into existing SAT/SMT based approaches without tuning original
encodings.

Alloy uses first-order relational logic as its specification language to model
the problem domain and reduce it to SAT instances [33–35]. It directly supports
finding minimal conflicts in the specification [36]. However, this functionality is
not guaranteed to find all minimal conflicts. Therefore, approaches using Alloy as
a basis for constraint solving engine are also restricted by this functionality.[37, 4,
38–40]. Further, Alloy’s engine is limited to unranked constraints so users are not
able to rank individual constraints, whereas our approach focuses on maximising
all ranked features.

6 Conclusion

In this paper, we have presented an approach to finding achievable features
and constraint conflicts for inconsistent metamodels. Our approach is unique
in the sense that we allow users to rank individual metamodel features and
find achievable features and constraint conflicts by using a state-of-the-art SMT
solver. Further, our SMT encodings presented in this paper could be used as an
add-on to existing SMT based approaches. Thus, this gives us an advantage of
avoiding the tuning of existing SMT encodings. To demonstrate feasibility and
scalability, we have implemented this approach into a prototype tool and evalu-
ated it against a benchmark. Our evaluation results suggest that the approach is
promising and scales reasonably well on a large number of metamodel features.
In the future, we plan to extend this approach to metamodel transformation
verification and develop a technique that is able to guide users step-by-step in
refining/synthesizing transformation rules based on their specified preferences.

15

References

1. Jouault, F., Kurtev, I.: Transforming models with ATL. In: The 2005 International
Conference on Satellite Events at the MoDELS, Springer (2006) 128–138

2. Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid, A.: Domain-Specific
Metamodelling Languages for Software Language Engineering. In: The 2nd SLE.
Springer (2010) 334–353

3. Becker, J., Rosemann, M., Uthmann, C.v.: Guidelines of business process modeling.
In: Business Process Management, Models, Techniques, and Empirical Studies,
Springer (2000) 30–49

4. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by
integrating SAT solving into USE. In: 49th International Conference on Objects,
Models, Components, Patterns, Zurich, Switzerland, Springer (2011) 290–306

5. Wille, R., Soeken, M., Drechsler, R.: Debugging of inconsistent UML/OCL models.
In: 2012 DATE. (2012) 1078–1083

6. Wu, H., Monahan, R., Power, J.F.: Exploiting attributed type graphs to generate
metamodel instances using an SMT solver. In: 7th TASE, Birmingham, UK (2013)

7. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1) (Janurary 2008) 1–33

8. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’ SMT solvers. In: 15th MoDELS. (2012) 432–448

9. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL con-
straints. Electronic Communication of the European Association of Software Sci-
ence and Technology 24 (2009)

10. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: 14th TACAS, Budapest,
Hungary, Springer (2008) 337–340

11. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations. (1972) 85–103

12. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69(1-3)
(2007) 27–34

13. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In:
8th International Workshop on Satisfiability Modulo Theories, Edinburgh, UK,
Elsevier Science (2010)

14. Gogolla, M., Büttner, F., Cabot, J. In: Initiating a Benchmark for UML and OCL
Analysis Tools. Springer (2013) 115–132

15. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL data types for SAT-based
verification of UML/OCL models. In: 5th TAP, Springer (2011) 152–170

16. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. Journal of Systems and Software 93 (2014) 1–23

17. Balaban, M., Maraee, A.: Finite Satisfiability of UML Class Diagrams with Con-
strained Class Hierarchy. ACM Transaction on Software Engineering and Method-
ology 22(3) (2013) 24:1–24:42

18. Wu, H.: Generating metamodel instances satisfying coverage criteria via SMT
solving. In: The 4th MODELSWARD. (2016) 40–51

19. Beckert, B., Keller, U., Schmitt, P.H.: Translating the Object Constraint Lan-
guage into first-order predicate logic. In: Verify Workshop at FLoC, Copenhagen,
Denmark (2002)

20. Maraee, A., Balaban, M.: Efficient reasoning about finite satisfiability of UML
class diagrams with constrained generalization sets. In: 3rd ECMDA, Springer
(2007) 17–31

16

21. Brucker, A.D., Wolff, B.: HOL-OCL – A Formal Proof Environment for
UML/OCL. In: The 11th FASE, Springer (2008) 97–100

22. Kyas, M., Fecher, H., de Boer, F.S., Jacob, J., Hooman, J., van der Zwaag, M.,
Arons, T., Kugler, H.: Formalizing {UML} models and {OCL} constraints in
{PVS}. Electronic Notes in Theoretical Computer Science 115 (2005) 39–47

23. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using boolean satisfiability. In: DATE (2010) 1341–1344

24. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: Ocl-lite: Finite reasoning on
UML/OCL conceptual schemas. Data & Knowledge Engineering 73 (2012) 1 – 22

25. Dania, C., Clavel, M.: Ocl2fol+: Coping with undefinedness. In: OCL@MoDELS.
(2013)

26. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation
by logic solvers. In: 19th FASE, Springer (2016) 87–103

27. Przigoda, N., Wille, R., Drechsler, R.: Ground setting properties for an efficient
translation of OCL in SMT-based model finding. In: 19th MoDELS, ACM (2016)
261–271

28. Dania, C., Clavel, M.: Ocl2msfol: A mapping to many-sorted first-order logic for
efficiently checking the satisfiability of ocl constraints. In: 19th MoDELS, ACM
(2016) 65–75

29. Wu, H., Monahan, R., Power, J.F.: Metamodel instance generation: A systematic
literature review. CoRR abs/1211.6322 (2012)

30. Wu, H.: An SMT-based approach for generating coverage oriented metamodel
instances. International Journal of Information System Modeling and Design 7
(3) (2016)

31. González Pérez, C.A., Buettner, F., Clarisó, R., Cabot, J.: EMFtoCSP: A tool
for the lightweight verification of EMF models. In: Formal Methods in Software
Engineering: Rigorous and Agile Approaches, Zurich, Suisse (2012)

32. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: IEEE ICST V&V Workshop, Berlin, Germany, IEEE
Computer Society (2008) 73–80

33. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions
on Software Engineering Methodologies 11(2) (2002) 256–290

34. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: 13th TACAS,
Braga, Portugal, Springer (2007) 632–647

35. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: A general-purpose higher-
order relational constraint solver. In: 37th ICSE, IEEE Press (2015)

36. Torlak, E., Chang, F.S.H., Jackson, D.: Finding minimal unsatisfiable cores of
declarative specifications. In: The 15th International Symposium on Formal Meth-
ods, Turku, Finland, Springer (2008) 326–341

37. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In: ACM/IEEE 10th MoDELS, Nashville, TN, Springer (2007)
436–450

38. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class diagrams analysis using alloy
revisited. In: The 14th MoDELS. (2011) 592–607

39. Garis, A., Cunha, A., Riesco, D.: Translating Alloy Specifications to UML Class
Diagrams Annotated with OCL. In: 9th SEFM, Montevideo, Uruguay, Springer
(2011) 221–236

40. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back.
In: 15th MoDELS, Springer (2012) 415–431

17

