
QMaxUSE: A Query-based Verification Tool for

UML Class Diagrams with OCL Invariants

Hao Wu (�)

Computer Science Department, Maynooth University, Maynooth, Ireland
haowu@cs.nuim.ie

Abstract. Verifying whether a UML class diagram annotated with Ob-
ject Constraint Language (OCL) constraints is consistent involves finding
valid instances that provably meet its structural and OCL constraints.
Recently, many tools and techniques have been proposed to find valid in-
stances. However, they often do not scale well when the number of OCL
constraints significantly increases. In this paper, we present a new tool
called QMaxUSE that is capable of automatically verifying a large num-
ber of OCL invariants. QMaxUSE works by decomposing them into a
set of different queries. It then uses an SMT solver to concurrently verify
each query and pinpoints conflicting OCL invariants. Our evaluation re-
sults suggest that QMaxUSE can offer up to 30x efficiency improvement
in verifying UML class diagrams with a large number of OCL invariants.

1 Introduction

Verifying the consistency of a UML class diagram annotated with OCL con-
straints is a challenging task [1,2,3]. This is because it requires finding an in-
stance satisfying both structural and OCL constraints at the same time. To
tackle this challenge, many tools and techniques have been proposed [4,5,6,7,8].
However, most of these tools and techniques do not scale well when the number
of OCL invariants significantly increases [9,10,11,12,13,5,14,15,16]. These tools
often time out or cannot pinpoint the conflicting OCL invariants that cause a
UML class diagram to become inconsistent.

In this paper, we present a new tool QMaxUSE that is capable of verifying a
large number of complex OCL invariants in an efficient manner. This is achieved
by two distinct features provided within QMaxUSE. (1) a query language that
allows users to select parts of a UML class diagram to be verified. (2) a new
specialised algorithm that is able to decompose a UML class diagram that has a
large number of complex OCL invariants into different queries. These queries can
then be verified concurrently via efficient SMT solving. The detailed explanation
of our approach can be found in [17].

Related Work. Verifying the consistencies of a UML class diagram has gained
much attention in recent years and many approaches and tools are proposed. A
UML class diagram can be considered as a graph, so graph-based approaches are
naturally employed for reasoning about consistencies [18,19,20,7,21]. Semeráth

c© The Author(s) 2022
E. B. Johnsen and M. Wimmer (Eds.): FASE 2022, LNCS 13241, pp. 310–317, 2022.
https://doi.org/10.1007/978-3-030-99429-7_17

V1.1

A
rt
ifa

cts Availab
le

http://orcid.org/0000-0001-5010-4746
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99429-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-99429-7_17

et al. proposed a new graph solver that is able to generate much larger number of
objects [22]. Their approach utilises a combination of multiple advanced graph-
based and SAT-solving techniques to achieve large-scale graphs generation. On
the other hand, many tools incorporate logic solvers to support OCL constraints
solving [14,16,23,24,25]. However, many of them do not scale well and cannot
pinpoint conflicting OCL constraints when a UML class diagram is inconsistent.
Our goal here is to provide an open-source tool that is capable of not only
locating conflicting OCL constraints but also preserves high-performance when
the number of OCL constraints significantly increases.

2 Architecture

QMaxUSE is fully automatic and integrated with the USE modelling tool [26].
Currently, it is command-line based and can be run under operating system
Windows 10 (x64), Ubuntu 20.04 (x64) and Mac OS Big Sur(x64). QMaxUSE is
implemented in Java. It consists of nearly 33k lines of code, and approximately
3.5k lines of code are dedicated to its algorithms. The latest version of QMaxUSE
is available at [27]:

https://github.com/classicwuhao/qmaxuse
The architecture of QMaxUSE is shown in Figure 1. Overall, it has four

layers: front-end, query engine, translation and solver.

Fig. 1. The overall architecture of QMaxUSE.

Front-end. At the front-end layer, QMaxUSE uses parsers from USE to gen-
erate ASTs (abstract syntax trees) for a class diagram and OCL invariants.
QMaxUSE provides a simple query language that allows users to choose a part
of a class diagram and its OCL invariants to be verified. To parse a query issued
by a user, we have designed and implemented a query parser. This parser is
able to read multiple queries simultaneously in a specification file and produces
corresponding ASTs.
Query Engine. QMaxUSE’s query engine uses a set of selection algorithms to
traverse the ASTs generated from the front-end layer to produce a query result.
A query result essentially contains a set of classes, attributes, associations and

QMaxUSE: A Query-based Verification Tool 311

https://github.com/classicwuhao/qmaxuse

OCL invariants to be verified. At this layer, QMaxUSE also provides a specialised
algorithm (Decomposer) that is able to decompose a class diagram along with
OCL invariants into a set of different queries. These queries can then be verified
concurrently using a query verification procedure.
Translation. At the translation layer, QMaxUSE uses a first-order translator

to translate a query into a set of first-order formulas that can be verified by the
SMT solver. The translation here is similar to the one described in [8]. We use
uninterpreted functions to encode classes or attributes and linear integer inequal-
ities to capture the multiplicities at an association-end. For an OCL invariant,
we traverse its AST and generate an SMT formula by using a combination of
first-order theories.
Solver. We have designed a new interface (SolverManager) to optimise the
interaction between QMaxUSE and the SMT solver. This interface can reduce
extra overhead between our first-order translator and an SMT solver by min-
imising the number of APIs calls. Currently, QMaxUSE uses Z3 as its default
SMT solver and this new interface easily allows us to plug in other SMT solvers
[28].

3 Design

3.1 Query

QMaxUSE allows a user to verify a particular set of features of a UML class
diagram through a query language. A query expression accepted by QMaxUSE
must use a select statement. It allows users to choose multiple features along
with OCL invariants from a UML class diagram. A feature here may include
a class, an attribute, an association or an OCL invariant. For example, the
following query (query 1) first selects the University, Department, Student
and Module class, an association teach along with the invariant defined under
the Module class from the UML class diagram in Figure 2.

query 1 : select University, Student.*, Department:teach:Student with

Student::inv2, Module::*

Notably, we allow users to use a wild character ∗ to represent a set of features
under a specified classifier. Further, it is quite common that an OCL invariant
may use features from other classes in its expression. Hence, our selection al-
gorithm implicitly selects these features during the execution of a query. Thus,
query 1 also selects the Person class from Figure 2 since inv2 defined under the
Student class imposes a constraint on the age attribute that is inherited from
the Person class.

For each query issued by a user, QMaxUSE launches a verification procedure
that is able to verify the consistencies of the collected features. This verification
procedure casts the set of collected features to a set of SMT formulas that
can be checked by an SMT solver. If the formulas are not satisfied, QMaxUSE
reports inconsistencies by pinpointing the OCL invariants that cause conflicts.
For example, QMaxUSE reports that there is a conflict between OCL invariant
inv1 and inv2 after verifying the following query (query 2). It shows that both

Hao Wu (�)312

Fig. 2. A UML class diagram with the 8 OCL class invariants shows how the students
in each department can choose multiple modules to study.

inv1 and inv2 can make the Student class impossible to instantiate. Figure 3
shows a screenshot of QMaxUSE after executing query 2.

query 2 : select Person.*, Student.* with Person::inv1, Student::inv2

3.2 Concurrent Verification

QMaxUSE has a crafted algorithm that is designed for performing concurrent
verification on UML class diagrams with a large number of OCL invariants. The
main idea of this algorithm is that it is able to decompose a large number of com-
plex OCL invariants into different queries. For each query, it launches a thread
of verification procedure to verify that query. In this way, QMaxUSE is able to
shift solving a large number of complex formulas from a single run into multiple
simultaneous runs on a collection of much smaller and less complex formulas.
Therefore, it is particularly powerful when the number of OCL invariants grows
significantly.

A high-level structure of this dedicated algorithm is shown in Algorithm 1
[17]. This algorithm takes a UML class diagram annotated with OCL invariants
(denoted as model) as its input and outputs a set S that contains all possible
conflicting features. It first employs a novel decomposition algorithm to decom-
pose a model into different parts and produces a query for each part of this
model. It then executes each query and produces a new query result by explic-
itly choosing those features that are used by an OCL invariant expression in

QMaxUSE: A Query-based Verification Tool 313

Fig. 3. A screenshot of running query 2 in QMaxUSE.

a query. Once the set of query results are generated, Algorithm 1 launches a
number of threads to verify the formulas (Φ) that encode query results. If the
Φ are not satisfied, then this means that there must be conflicts. Finally, our
algorithm extracts those conflicting features and saves them into the set S.

Algorithm 1: ConcurrentVerification

Input : A UML class diagram annotated with OCL invariants (model)
Output: A set of conflicting features cause inconsistencies (S).

1 R← ∅ ∧ S ← ∅;
2 Q← Decompose(model); /*produce a set of queries Q*/
3 foreach q ∈ Q do

4 qr = q.execute(); /* create a new query result qr*/
5 /* add features used in an OCL invariant into a query result qr*/
6 foreach inv ∈ q do

7 qr.add(inv.classes(), inv.attributes(), inv.associations(), inv);
8 end

9 R.add(qr);

10 end

11 /* verify model with |R| number of threads. */
12 foreach qr ∈ R do

13 Φ← Translate(qr); /*cast qr to SMT formulas*/
14 ThreadManager.start(QueryV erification(Φ, S));
15 /*check satisfiability of Φ and saves each conflict occurred in Φ in

the set S*/
16 end

17 return S;

Hao Wu (�)314

Name
OCL Structure Size MaxUSE [12] (sec) QMaxUSE (sec)
Invs Nodes Quant Op Time Threads Time

P
a
rt

A A1 6 30 3 9 0.38 2 0.364
A2 7 52 8 1 0.148 1 0.087
A3 1 7 2 1 0.174 3 0.426
A4 8 73 7 18 0.204 3 0.241

P
a
rt

B

B3 68 430 9 111 131.23 42 4.604
B4 90 599 23 152 159.378 68 7.151
C4 98 698 69 137 TO 68 8.111
C5 156 1008 100 184 TO 90 114.41
B5 136 925 44 228 TO 90 118.64
D4 101 753 102 163 TO 56 8.211
D5 166 1143 131 225 TO 95 14.026
E3 37 403 31 102 59.535 27 2.587
E4 105 985 56 246 TO 42 4.464
E5 167 1134 68 325 TO 45 3.653

Table 1. Evaluation results. Invs=number of OCL invariants, Nodes=size of invariant
ASTs, Quant=number of quantifiers, Op=number of operators. TO= Timeout (20min),
MaxUSE=QMaxUSE without query and concurrent verification support.

4 Results

We use a benchmark from [8] to show the size and the complexities of OCL
invariants QMaxUSE can handle. This benchmark has two parts. Part A only
covers a small number of toy examples from [29] and Part B covers a wide
range of OCL language features including: nested quantifiers, collections, logi-
cal/arithmetic operations and navigations. In particular, Part B contains a large
number of complex and conflicting OCL invariants. Table 1 summarises part
of our evaluation results for QMaxUSE 1. The evaluation is carried out on an
Intel(R) Core (TM) machine that has six 2.8GHz cores with 16G memory. The
underlying SMT solver is the Z3 SMT solver (version 4.8.10). As it can seen
that QMaxUSE is able to handle much larger size of OCL invariants. It is able
to gain upto 30x efficiency in improvement in verifying large number of complex
OCL invariants. For example, it takes 131.23 seconds to verify B3 in Group B
without using our query and concurrent techniques while QMaxUSE is able to
finish its verification in just 4.6 seconds.

5 Conclusion

In this paper, we have presented our latest verification tool QMaxUSE. We
believe that QMaxUSE can add significant value in modelling community for two
reasons. (1) Users now are able to use QMaxUSE to incrementally verify different
parts of their class diagrams by issuing different queries. (2) Our preliminary
evaluation results indicate that QMaxUSE can scale well on a large number of
complex OCL invariants because of our concurrent verification algorithm.

1 The complete benchmark is packed within QMaxUSE release files.

QMaxUSE: A Query-based Verification Tool 315

References

1. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class diagrams is
EXPTIME-hard. In: International Workshop on Description Logics. (2003)

2. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1–2) (2005) 70–118

3. Queralt, A., Teniente, E.: Reasoning on uml class diagrams with ocl constraints.
In: Conceptual Modeling, Springer (2006) 497–512

4. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite reasoning on
UML/OCL conceptual schemas. Data & Knowledge Engineering 73 (2012) 1–22

5. Dania, C., Clavel, M.: Ocl2msfol: A mapping to many-sorted first-order logic for
efficiently checking the satisfiability of ocl constraints. In: International Conference
on Model Driven Engineering Languages and Systems, ACM (2016) 65–75

6. Maraee, A., Balaban, M.: Efficient reasoning about finite satisfiability of UML
class diagrams with constrained generalization sets. In: 3rd European Conference
Model Driven Architecture, Springer (2007) 17–31

7. Balaban, M., Maraee, A.: Finite Satisfiability of UML Class Diagrams with Con-
strained Class Hierarchy. ACM Transactions on Software Engineering and Method-
ology 22(3) (2013) 24:1–24:42

8. Wu, H., Farrell, M.: A formal approach to finding inconsistencies in a metamodel.
Software and Systems Modeling (2021)

9. González Pérez, C.A., Buettner, F., Clarisó, R., Cabot, J.: EMFtoCSP: A tool for
the lightweight verification of EMF models. In: International Workshop on Formal
Methods in Software Engineering: Rigorous and Agile Approaches, IEEE (2012)
44–50

10. Kuhlmann, M., Gogolla, M.: From uml and ocl to relational logic and back. In:
International Conference on Model Driven Engineering Languages and Systems,
Springer (2012) 415–431

11. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: Ocl-lite: Finite reasoning on
UML/OCL conceptual schemas. Data & Knowledge Engineering 73 (2012) 1 – 22

12. Wu, H.: Maxuse: A tool for finding achievable constraints and conflicts for in-
consistent UML class diagrams. In: Integrated Formal Methods, Springer (2017)
348–356

13. Wille, R., Soeken, M., Drechsler, R.: Debugging of inconsistent UML/OCL models.
In: Design, Automation Test in Europe, IEEE (2012) 1078–1083

14. Wu, H., Monahan, R., Power, J.F.: Exploiting attributed type graphs to gener-
ate metamodel instances using an SMT solver. In: International Symposium on
Theoretical Aspects of Software Engineering, IEEE (2013) 175–182

15. Wu, H.: Generating metamodel instances satisfying coverage criteria via SMT
solving. In: International Conference on Model-Driven Engineering and Software
Development, IEEE (2016) 40–51

16. Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of uml models. In:
Design, Automation Test in Europe, IEEE (March 2011) 1–6

17. Wu, H.: A query-based approach for verifying UML class diagrams with OCL
invariants (to appear). In: 18th European Conference on Modelling Foundations
and Applications

18. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta
models. Software and Systems Modeling 8(4) (2009) 479–500

19. Hoffmann, B., Minas, M.: Defining models - meta models versus graph grammars.
Electronic Communications of the EASST 29 (2010) 1–14

Hao Wu (�)316

20. Hoffmann, B., Minas, M.: Generating instance graphs from class diagrams with
adaptive star grammars. In: International Workshop on Graph Computation Mod-
els, Electronic Communications of the EASST (2011)

21. Maraee, A., Balaban, M.: Removing redundancies and deducing equivalences in
UML class diagrams. In: International Conference Model-Driven Engineering Lan-
guages and Systems, Springer (2014) 235–251

22. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for the automated generation
of consistent domain-specific models. In: Proceedings of the 40th International
Conference on Software Engineering. ICSE ’18, Association for Computing Ma-
chinery (2018) 969–980

23. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In: International Conference on Model Driven Engineering Lan-
guages and Systems, Springer (2007) 436–450

24. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation
by logic solvers. In: 19th International Conference on Fundamental Approaches to
Software Engineering, Springer (2016) 87–103

25. Kuhlmann, M., Gogolla, M.: Strengthening SAT-based validation of UML/OCL
models by representing collections as relations. In: Modelling Foundations and
Applications. Volume 7349. Springer (2012) 32–48

26. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69(1-3)
(2007) 27–34

27. QMaxUSE: https://doi.org/10.5281/zenodo.5804509
28. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, Springer
(2008) 337–340

29. Gogolla, M., Büttner, F., Cabot, J.: Initiating a benchmark for UML and OCL
analysis tools. In: International Conference on Tests and Proofs, Springer (2013)
115–132

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

QMaxUSE: A Query-based Verification Tool 317

https://doi.org/10.5281/zenodo.5804509
http://creativecommons.org/licenses/by/4.0/

	QMaxUSE: A Query-based Verification Tool for UML Class Diagrams with OCL Invariants
	1 Introduction
	2 Architecture
	3 Design
	3.1 Query
	3.2 Concurrent Verification

	4 Results
	5 Conclusion
	References

