MaxUSE: A Tool for Finding Achievable
Constraints and Conflicts for Inconsistent UML
Class Diagrams

Hao Wu

Department of Computer Science,
National University of Ireland, Maynooth
haowu@cs.nuim.ie

Abstract. In the context of Model Driven Engineering (MDE), the
structure of a system is typically described by using a UML class diagram
annotated with a set of Object Constraint Language (OCL) constraints.
These constraints specify rules that are not expressible by using struc-
tural features. These constraints can be conflicting, resulting in inconsis-
tencies. When this happens, the existing tools terminate and provide no
information about which constraints are achievable and which ones cause
conflicts. In this paper, we present MaxUSE, a tool for finding achiev-
able OCL constraints and conflicts for inconsistent UML class diagrams.
MaxUSE integrates the USE modeling tool with a satisfiability mod-
ulo theories (SMT) solver. It finds a set of achievable constraints based
on their rankings by casting to a weighted MaxSMT problem and at the
same time locates constraint conflicts. We use an example to demonstrate
MaxUSE’s usage scenarios and discuss its usefulness to the community.

1 Introduction

Model-Driven Engineering (MDE) plays a significant role in modern software
development by exploiting different abstract models. Among them, Unified Mod-
eling Language (UML) is a common modeling language for modeling a system
at an abstract level. It uses structure and behaviour diagrams to depict static
and dynamic aspects of a system. For example, using class diagrams to model
relationships between different entities and state machines to capture possible
transitions from one state to another. On other hand, Object Constraint Lan-
guage (OCL), a declarative language, is used to describe necessary rules that can
not be expressed by UML diagrams. These rules impose additional constraints
over different structural features to eliminate undesirable scenarios. Verifying
consistency of a UML model therefore becomes a task of finding an instance
that conforms to not only structural constraints but also OCL constraints.
Recently, a number of tools and approaches have been proposed to verify
the consistency of a UML class diagram by employing formal verification tech-
niques [1-4]. However, when a UML class diagram is inconsistent these tools
typically have no knowledge about the constraints that cause conflicts. Know-
ing information about which constraints cause conflicts is very helpful for users

to understand and fix their class diagrams. In practice, users may also wish to
know how many constraints can be achieved in the current diagram, and use this
information for further refining their class diagrams. For example, a user may be
interested in fixing the minimum number of constraints that cause conflicts. In
other scenarios, users may treat individual constraints differently based on their
own domain-specific knowledge and look for an instance that satisfies the most
important OCL constraints.

In this paper, we present MaxUSE, an automated tool for finding the set of
achievable constraints based on user’s rankings and constraint conflicts for incon-
sistent UML class diagrams. MaxUSE extends USE, an existing modeling tool,
by integrating an SMT solver as its back-end reasoning engine. It finds the maxi-
mum total rank by solving a weighted MaxSMT problem and identify constraint
conflicts by solving the set cover problem. Detailed theories and algorithms have
been addressed in [5]. Here, we describe the integration of a modeling tool with
an SMT solver (Section 2) and demonstrate MaxUSE’s usage scenarios (Section
3) by illustrating it with an example.

2 Overall Architecture

MaxUSE is built on top of the USE modeling tool. It exploits USE’s front-end
to read in a UML class diagram annotated OCL constraints and generates SMT
assertions that can be solved by an SMT solver. The overall architecture of
MaxUSE, as shown in Figure 1, consists of three layers: USE, Uran and Solver.

USE. USE is an open-source modeling tool that allows users to construct
UML class diagrams in its own specification [6]. Tt also supports constraints
written in OCL. USE provides a set of commands that enable users to construct
object diagrams (instances) and check whether an object diagram (instance) con-
forms to its class diagram’s structural and OCL constraints. To support ranked
constraints, we change USE’s front-end by modifying its grammars, UML and
OCL metamodels (abstract syntax trees). We then implement two visitors that
traverse and store each model feature, such as an association and a class invari-
ant, into a temporal memory location that can be used by Uran.

Uran. Uran is an open-source project that aims to provide users with an
engine for constructing and evaluating SMT2 assertions through well-defined
APIs !. The purpose of Uran is to decouple assertion generation functionalities
from modules that are designed for other purposes. This design allows users to
freely modify and upgrade assertion generation to accommodate specific pur-
poses without affecting other modules. Further, Uran directly interacts with an
SMT solver via different APIs. Currently, Uran is able to communicate with
the Z3 SMT solver. MaxUSE uses Uran APT’s to translate model features ex-
tracted from a USE specification to a set of predicates, functions and objects. It
then outputs a set of well-formed SMT?2 assertions associated with correspond-
ing ranks. In other words, it formalises a UML class diagram with ranked OCL
constraints into a weighted MaxSMT problem.

! available at: https://github.com/classicwuhao/uran

MaxUSE

\USE :
El ModelVistor | | Invariantvisitorl E

model features

(R bttt IR
1 Uran v v H
' | FunctionFactory | E
: ¢ functions :
E | FormulaWriter | H
I .
I----------------------------------:
1 Solver ranked assertions !
: \4 .
: | Weighted MaxSMT Wrapperl E
H assertions E
[z3smTsolver |
e :

Fig. 1. The architecture of MaxUSE integrates with three layers: USE, Uran
and Solver.

Solver. In order to solve this weighted MaxSMT problem, we implement
a wrapper that iteratively calls the Z3 SMT solver until we find the optimal
value. To reduce the number of calls to the solver, this wrapper uses a binary-
search based algorithm to find the optimal value. Once an optimal values is
found, we enumerate all possible ways of achieving this value by blocking all
previous successful assignments until no more assignments can be found. Each
assignment found by the solver is a weighted MaxSMT solution. Finally, we map
each solution back to a corresponding model feature and generate a report. To
find all constraint conflicts, we formalise the set of weighted MaxSMT solutions
into the set cover problem and solve it using the algorithm described in [5].
Therefore, MaxUSE uses an SMT solver for computing both sets of achievable
constraints and conflicts for inconsistent UML class diagrams.

3 Usage Scenarios

In this section, we illustrate three usage scenarios of using MaxUSE. The three
scenarios discussed in this Section are based on the example shown in Figure 2.
This example uses a UML class diagram to represent a real world example of
students in a university choosing multiple modules to study. This class diagram
is enriched with 8 OCL constraints specified as class invariants (invl to inv8)
under three classes. For example, each student must have a unique id number
(inv4) and can only choose modules that are in their year (inv5). In this example,
we use numbers 1 to 6 to distinguish a student’s year, and students that are in

year 6 are considered as research students. Thus, a university has some non-
research and research students (inv6). All invariants except for inv8 are ranked
by using an integer value.

In this example, 7 (invl-inv7) out of 8 class invariants are ranked. We con-
sider a ranked class invariant as a soft constraint. This means that it might be
switched off during the search for the maximum total rank. For example, inv4
is a soft constraint and is ranked as 5. On the other hand, if an invariant is not
ranked, then it is a hard constraint that must not be ignored during the search.
For example, inv8 in Figure 2 must hold, no matter what. Therefore, this al-
lows users to rank OCL constraints in a UML class diagram in 3 different ways:
(1) not ranked at all (hard constraints only) (2) totally ranked (soft constraints
only) (3) partially ranked (a mixture of soft and hard constraints).

Person

age : Integer

i

choose

Student 1 * Module
id : Integer code : Integer
year: Integer year: Integer

context Person
@Rank =2
inv1: Person.allinstances()->exists(p|p.age>0 and p.age<18)

context Student

@Rank =3

inv2: self.age>18

@Rank = 4

inv3: self.year>=1 and self.year<=6

@Rank =5

inv4: Student.alllnstances()->forAll(s1,s2:Student|s1<>s2 implies s1.id <> s2.id)
@Rank =6

inv5: Student.alllnstances()->forAll(s|s.modules->forAll(m|s.year=m.year))
@Rank = 6

inv6: Student.allinstances()->exists(s|s.year=6) and Student.allinstances()->exists(s|s.year<6)
@Rank =7

inv7: Student.alllnstances()->forAll(s|s.modules->notEmpty())

context Module
inv8: self.year>=1 and self.year<=5

Fig. 2. A UML class diagram annotated with ranked OCL constraints. The ranks
are highlighted in the shaded area.

3.1 Verifying Consistency

If the set of OCL constraints is not ranked at all, then this means that every single
constraint must hold. In this scenario, MaxUSE translates a UML class diagram

with its OCL constraints to a set of SMT assertions. A UML class diagram
is consistent iff generated SMT assertions are satisfiable. MaxUSE uses the Z3
SMT solver to determine the satisfiability of these assertions. In our example,
MaxUSE is unable to find an instance that satisfy all 8 OCL constraints in
Figure 2, assuming that all constraints are hard constraints. This is due to 2
conflicts (sets): (invl,inv2) and (inv5,inv6,inv7,inv8). In other words, removal
of any elements in a conflict (set) makes the remaining elements achievable. For
example, invb, inv7 and inv8 are achievable if inv6 is removed from the class
diagram.

3.2 Finding Achievable Constraints

In many practical situations, users may treat individual constraints differently.
For example, a university may consider a registration procedure where students
choosing some modules (inv7) is more important than choosing modules in their
corresponding year (inv5). We thus allow users to freely rank individual con-
straints to distinguish their importance. In this scenario, MaxUSE calculates a
total rank from the set of soft constraints and computes a maximum achievable
rank by solving a weighted MaxSMT problem.

In Figure 2, 7 ranked class invariants result in a total rank of 33. Since this
UML class diagram is inconsistent, MaxUSE maximises this total rank up to 25.
In fact, MaxUSE finds a total of two solutions that can achieve this value. These
two solutions are listed in Table 1.

Solution 1 Solution 2
Invariant|Rank|Invariant |Rank
invl 0 invl 0
nv2 3 nv2 3
nvd 4 nvd 4
invd 5 invd 5
invd 6 invh 0
inv6 0 nvb 6
o7 7 mu7 7
nv8 NA nv8 NA

Table 1. Two solutions that can achieve a maximum rank of 25. Each solution
contains a set of 5 achievable invariants out of 7 soft constraints. The invariants
that cannot be met are marked with 0 in the “Rank” column. “NA” indicates
that a corresponding class invariant is a hard constraint.

MaxUSE finds a maximum of 5 achievable invariants out of 7 soft constraints
in Figure 2. Note that MaxUSE always first verifies the consistency of a UML
class diagram. If the UML class diagram is consistent, then MaxUSE terminates
since every constraint is achievable. In other words, MaxUSE finds the set of
achievable (ranked) constraints only when a UML class diagram is not consistent.

3.3 Finding Constraint Conflicts
To find all conflicts among OCL constraints, MaxUSE first treats each constraint
equally, then casts it to a MaxSMT problem 2 and solves it by using the Z3
SMT solver. Here, the returned solutions to MaxSMT is a set, namely they
are MaxSMT solutions. Each MaxSMT solution in this set represents a way
of achieving a maximum number of constraints. MaxUSE formalises this set of
solutions into the set cover problem and solves it by using the algorithm in [5].
This algorithm is inspired by the work on using the set cover problem to model
conflicts among SAT formulas [7]. Finally, MaxUSE interprets each solution to
the set cover problem as a conflict.

For the class invariants in Figure 2, MaxUSE finds a total of 8 possible ways
of achieving a maximum number of 6 class invariants (shown in Table 2) and 2
conflicts: (invl,inv2) and (invb,inv6,inv7,invs).

Invl Inv2 Invd Invd Invd Invb Inv7 Inv8
N v X v / X v v /
(2)| v X v v / X /
3) v X v v v X v
4| v X v v v v / X
(5)| X 7/ X v v /
6)] X v v v / X /
(M| X v v v v / X v
(8)| X v v v v v / X

Table 2. A total of 8 MaxSMT solutions. Each one of them represents a way of
achieving a maximum 6 number of class invariants shown in Figure 2. We use
a v to indicate an invariant is achievable and a X to denote an invariant that
cannot be met.

The first conflict is quite obvious and it is caused by the invariants invl
and inwv2 defined for the age attribute. However, the second conflict is not easy
to identify. This conflict is caused by the invariants that there must exist some
research and non-research students (inv6) choosing some modules (inv7) in their
corresponding year (inv5). However, there are modules that are only available
for non-research students (inv8: between year 1 and 5).

4 Usefulness

By integrating an SMT solver into a modeling environment, users are now able
to use MaxUSE to tackle ranked OCL constraints in a UML class diagram. More
importantly, when a UML class diagram is not consistent users no longer need
to spend time on working out which constraints are achievable and which ones
cause the conflicts. They can easily use MaxUSE to find out this information.
In practice, this is a very effective and efficient way for further refining class

2 Note that since the rank for each constraint is equal, this means that a weighted
MaxSMT can be treated as a MaxSMT problem.

diagrams. Further, our evaluation results in [5] suggest that MaxUSE scales rea-
sonably well and the quality of computed constraint conflicts is high. Therefore,
we believe that users from the software verification and Model Driven Engineer-
ing community can benefit from its capabilities.

5 Availability

MaxUSE is a free and open-source project hosted on GitHub under the GNU
public license:

https://github.com/classicwuhao/maxuse

The repository is accompanied with detailed instructions and examples that
show how to build and use MaxUSE. The implementation of MaxUSE consists
of approximately Java 7000 lines of code. Currently, MaxUSE is command based
and easy to install using the provided build script. In addition, the benchmark
that we used for evaluating MaxUSE is also available in the repository.

6 Related Work

Even though a number of tools or approaches leverage the power of constraint
solvers and theorem provers for verifying/reasoning UML models, they do not
support ranked constrains and conflict finding [8, 9, 1-3, 10-15, 4, 16]. To the best
of our knowledge, MaxUSE is the first automated tool that supports finding
achievable constraints (based on rankings) and conflicts for UML class diagrams.

The USE modeling tool takes a similar apporach to UML2Alloy. It integates
with a relational model finder for verifying UML class diagrams [1,17]. However,
the encodings used in the model finder are limited to boolean formulas, and thus
they are not suitable for tackling numeric constraints. In particular, numeric
ranks are defined for each OCL constraint. UMLtoCSP verifies EMF models by
casting it to a Constraint Satisfaction Problem (CSP) [15,18-20]. However, they
only allow users to check weak and strong satisfiability by generating a different
number of instances for every class. The HOL-OCL tool encodes OCL into the
Higher-order Logic (HOL) and uses Isabelle to reason about UML class diagrams
[13]. Since Isabelle is an interactive theorem prover, the level of automation is
quite limited and the feedback can be difficult to interpret by software engineers.

7 Conclusion

In this paper, we demonstrate how MaxUSE integrates an SMT solver into a
modeling environment. This integration allows users to leverage efficient SMT
solving to reason over ranked constraints defined in a UML class diagram. In
addition, MaxUSE can significantly reduce the amount of effort in investigat-
ing inconsistencies in UML class diagrams by automatically finding the set of
achievable OCL constraints and conflicts. In the future, we plan to build a plug-
in for MaxUSE to allow us to exploit multiple SMT solvers for reasoning over a
considerably large number of OCL constraints.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by
integrating SAT solving into USE. In: 49th TOOLS, Zurich, Switzerland, Springer
(2011) 290-306

Wille, R., Soeken, M., Drechsler, R.: Debugging of inconsistent UML/OCL models.
In: 2012 DATE. (2012) 1078-1083

Wu, H., Monahan, R., Power, J.F.: Exploiting attributed type graphs to generate
metamodel instances using an SMT solver. In: 7th TASE, Birmingham, UK (2013)
Dania, C., Clavel, M.: Ocl2msfol: A mapping to many-sorted first-order logic for
efficiently checking the satisfiability of OCL constraints. In: 19th MoDELS, ACM
(2016) 65-75

Wu, H.: Finding achievable features and constraint conflicts for inconsistent meta-
models. In: 13th ECMFA. (2017)

Gogolla, M., Biittner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69(1-3)
(2007) 27-34

Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1) (Janurary 2008) 1-33

Beckert, B., Keller, U., Schmitt, P.H.: Translating the Object Constraint Lan-
guage into first-order predicate logic. In: FLoC @ 3rd Federated Logic Confer-
ences,Denmark (2002)

Maraee, A., Balaban, M.: Efficient reasoning about finite satisfiability of UML
class diagrams with constrained generalization sets. In: ECMDA, Springer (2007)
17-31

Soeken, M., Wille, R., Drechsler, R.: Encoding OCL data types for SAT-based
verification of UML/OCL models. In: 5th TAP, Zurich, Switzerland, Springer
(2011) 152-170

Biittner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf” SMT solvers. In: 15th MoDELS. (2012) 432-448

Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL con-
straints. ECEASST 24 (2009)

Brucker, A.D., Wolff, B..: HOL-OCL - A Formal Proof Environment for
UML/OCL. In: The 11th FASE, Springer (2008) 97-100

Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In: ACM/IEEE 10th MoDELS, Nashville, TN, Springer (2007)
436-450

Beckert, B., Hahnle, R., Schmitt, P.H.: Verification of Object-oriented Software:
The KeY Approach. Springer, Berlin, Heidelberg (2007)

Wu, H.: Generating metamodel instances satisfying coverage criteria via SMT
solving. In: The 4th MODELSWARD. (2016) 40-51

Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: 13th TACAS,
Braga, Portugal, Springer (2007) 632-647

Gonzdlez Pérez, C.A., Buettner, F., Clarisé, R., Cabot, J.: EMFtoCSP: A tool
for the lightweight verification of EMF models. In: SEMF:Rigorous and Agile
Approaches, Zurich, Suisse (2012)

Cabot, J., Clarisé, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: IEEE STV&V Workshop, Berlin, Germany, IEEE
Computer Society (2008) 73-80

Cabot, J., Clarisé, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. Journal of Systems and Software 93 (2014) 1-23

