
Applying a MDE Approach to a Healthcare
Environment: a case study of an AE dept

Hussein Gannud, Hao Wu and Joseph Timoney
Computer Science Department,

National University of Ireland, Maynooth.
Email: {hganuud, haowu, jtimoney}@cs.nuim.ie

Abstract—One of the main challenges of Healthcare services
is to find a suitable way of managing limited resources within
a highly demanding environment. This challenge can now be
tackled by deploying reliable software systems that are supported
by Software Engineering practices. In this paper, we present
a Model Driven Engineering (MDE) approach that, by way
of an example, is applied to an Accident and Emergency
(AE) department. This approach works by designing a UML
class diagram annotated with a set of OCL constraints. These
constraints formally express restrictions on interactions between
various elements of the system. We formally evaluate our model
by using a logic solver. This approach lays the foundation of our
intentions to further develop a more complete health care system.
We report the valuable lessons learnt from the work and explain
the limitation we observed.

I. INTRODUCTION

In many countries, and notably including Ireland, healthcare
services face many challenging problems associated with
increased demands on their services [3]. For example, coping
with the random nature of patient arrivals, or the organisation
of rosters for a large number of staff members with different
specialities. Information technologies are needed to tackle
these challenges through carefully designed software artefacts
that facilitate the automation of many processes, reducing
the burdens on resources. Healthcare services have already
been profoundly influenced by computing, transforming its
functionalities from an old-style paper-based organisation into
one with software-managed systems. Both commercial be-
spoke and publically available solutions exist, and notably
recent open source projects for Healthcare information systems
include Model Driven Health Tools (MDHT) [28], GNUHealth
[12], and LibreHealth [20]. However, there still exists gaps be-
tween the theoretical potential of healthcare software artefacts
and what they currently are achieving.

Away from Healthcare, it is recognised that many private
sector industries have seen significant benefits following the
introduction of customised high quality software solutions
[30]. One Software Engineering approach that has stood out
in particular for such systems is known as Model-Driven
Engineering (MDE). It allows the exploitation of models
to simulate, estimate, understand, communicate, and pro-
duce code [11][30]. The Object Management Group promote
Model-Driven Architecture (MDA) [1], that is derived from
MDE, and offer many examples of its successful application
that includes projects by the Rail division of Siemens [16],

Deutsche Bank [15], and The Swedish Parliament [14]. Such
testimonials indicate that the utility of MDE should lead to
superior solutions to the challenges for Healthcare systems.

Better insights into tackling these challenges can be ob-
tained by separating them into two distinct categories as
facilitated by MDE, that is, Static and Dynamic [8]. Static
features of challenges are mainly infrastructure-oriented and
are not time-dependent. They influence the designing/adapting
of systems that facilitate effective management and/or access
to resources. In the context of healthcare these resources could
be staff members’ time sheets or patients’ history records.
Dynamic features are concerned with issues that occur within
time spans that necessitate the allocation of limited resources
efficiently. For example, assigning specialist treatment to pa-
tients in a manner such that the waiting time is kept to a
minimum [2]. An obvious problem area that should benefit
from the application of this MDE approach is the Accident and
Emergency (AE) department of a hospital. According to the
media coverage it appears that many AE departments are not
functioning correctly in either static and dynamic dimensions.
By implication then, the supporting software systems are not
available to rectify this.

Therefore, in this paper as a first step we present a Model-
Driven Engineering (MDE) approach that models a static
aspect of an AE department. This is adopted as it well accepted
that it is sensible to tackle the static problems first. The focus
within the paper is on modelling the relationships between
patients and an AE department, and specifying the necessary
rules as the constraints over these relationships. Additionally,
to guarantee quality, the correctness of designed models is
formally verified. The use of MDE approach gives us several
advantages: 1) It is a widely accepted approach to model
software artefacts. 2) It provides a variety of structural and
behavioural components so that we are able to precisely build
our models and express constraints. 3) It enables us to employ
verification techniques to formally verify the correctness of our
models.

The main contribution of the paper are summarised as
follows:

1. We design a model for an AE department by using UML
class diagrams and establish a set of constraints that
are expressed using Object Constraint Language (OCL)
(Section III).

2. We formally evaluate our model by casting it to a

Satisfiability Modulo Theories problem (Section IV-B).

II. RELATED WORK

Surveying the literature on healthcare and MDE it can be
found that there has been an upswing of interest towards
applying MDE to healthcare systems [29]. These models
have been directed at improving various aspects of healthcare
systems such as the data layers for storing patients medicine
records and the control layers for monitoring patient flows
[6]. Currently, there appears to be natural division within the
literature in the sense that the work has been to either develop
static or dynamic models but not both together.

With regard to static models, Lahboube et al. propose a
hospital information system metamodel based on MDE using
UML class diagrams. They realise that the difficulties in
implementing complex Health Information Systems (HIS) are
many but by having a formal framework it would contribute
greatly to overcoming operational issues. The validation of
their metamodel is done by deployment in a real hospital
environment [19]. Similarly, Raghupathi and Umar use MDA
with UML to design a prototype patient tracking information
system. Advantages including abstraction, productivity gains,
stable interoperability, portability, and cost efficiency [26].
Raistrick use MDA and executable UML for a new access
control interface to patient data [21][22]. This is done to
simplify the integration of old and new Software systems.
It facilitated the use of code generators, derived from the
executable models, for porting specific code implementa-
tions across multiple platforms [27]. Traore et al. present a
methodology that combined MDA with a Service Oriented
Architecture (SOA) to enable a telemedicine service to have
interoperable exchanges across applications [29]. Another
work mention that how model-driven application development
fosters semantic interoperability and interconnected innovative
application[10].

Research that investigates dynamic modeling and MDE
include [33], [6] and [18]. [6] study the integration of a
qualitative and quantitative approach to construct a patient flow
model. Another work investigates different models with fore-
casting methods to analyse daily patient visits to an emergency
department [6]. Lastly, Jiang et al. propose a dynamic decision
support system based on MDA with UML [18].

Clearly, the static and dynamic modeling methodologies of
MDE have different roles to play in the healthcare environment
and are useful to a variety of applications. Interoperability
and code generation currently appear to be the most desirable
features of static MDE modeling. However, a key facility of
static models, OCL, has not been introduced in the literature
to date. OCL can be understood as a means to create very
sophisticated interacting models which can be verified using
a powerful solver to determine the existence of constraint
conflicts. This does suggests that there is an opportunity
to explore MDE with regard to this. Therefore, our paper
distinguishes itself from prior work by demonstrating how
to develop a MDE solution with OCL constrains in a static
model. In particular, we demonstrate the feasibility of this

approach by applying it to an AE system. We consider this
approach as our first step towards building a more complete
MDE model that integrates both static and dynamic models.

This paper is organised as follows: Section III gives details
of our model by presenting a UML class diagram annotated
with OCL constraints. Section IV-B shows the formal eval-
uation of our model by answering two research questions.
Section V discusses the valuable lessons learnt from the ap-
proach and identifies one particular limitation. Finally, Section
VI concludes the paper and gives the direction for our future
work.

III. THE APPROACH

A. Overview

Our approach to modelling an AE department can be viewed
as three steps. First, we model the relationships between
the patients and the AE department by using a UML class
diagram. Second, we then define a set of constraints in Object
Constraint Language (OCL) over these classes to rule out
certain scenarios. For example, a staff member can never leave
when a patient requires treatment urgently. Finally, we cast our
models along with these constraints to a Satisfiability Modulo
Theories problem so that we are able to formally verify our
design.

B. Modelling AE Department

We use UML class diagrams to model multiple entities
for an AE department including staff members, patients and
relationships between them. The full UML class diagram is
shown in Figure 1.

Definition 1. A UML class diagram can be defined as a tuple
〈C,A, T 〉, where

1. C is a set of classes.
2. A is a set of associations which captures the relationships

among different classes.
3. T is an inheritance tree that describes inheritance rela-

tionships over C.

By using the Definition 1, the classes in our model for the
AE department in Figure 1 can be viewed as follows:

C = {Hospital,Department, People, Patient, Staff,
Triage Staff,Doctor,Nurse, Technicians,
Porter,Receptionist}

For each class c ∈ C, it consists of a set of attributes S
where each one of them has its own type t. For example,
in our model (Figure 1), the class Department has 4 string
type attributes: name,id,loc and phone. Similarly, the class
AE Department has 2 integer type attributes: size and
capacity describing the number of staff members working
there and the maximum number of patients it can admit
respectively.

The types used for defining an attribute in a class could vary
from primitive types to collection types such as Set and Bag.
One of the types commonly used for defining an attribute is

Enumeration. With the use of this kind of type, an attribute
can describe a set of possible values. For example, we define a
patient’s status (in the Patient class) by using the enumeration
type Patient Status. This type defines 4 possible values
for a patient’s status: Expectant, Immediate, Delayed and
Minor.

Our model in Figure 1 also depicts a set of associations as
they are defined over the classes, and thus they are captured
by the following set.
A = {ConsistOf,Admit,WorkFor, Check} where each

association in the set A describes a relationship between two
classes:

ConsistOf = (Hospital,Departments)
Admit = (Patient, AE Department)
WorkFor = (Staff,AE Department)
Check = (Patient, T riage Staff)

Each association also defines multiplicities at each asso-
ciation end. For example, the association Admit describes
a relation that an AE Department can take in zero or
more Patients. Similarly, the association WorkFor between
classes AE Department and Staff describes that there are
multiple staff members who work in the AE department. The
association Check captures that multiple patients could be
examined by different triage staff members. In some scenarios,
a class might consist of several other classes which are part
of its components. In this context, a composition (Not-Shared
Association) is used. For example, we use a composition to
indicate that a Hospital consists of many Departments.

Besides the classes and associations defined for our model,
another important feature is inheritance. By appropriately
defining inheritances among multiple classes, we are able
to raise the abstraction level of our model. In our model,
all classes that describe a person are inherited from a class
called People. This is an abstract class that defines common
attributes such as first name (fname), last name (lname),
birthday (birthday), and gender (gender). Thus, we abstract
these attributes so that classes such as Patient and Staff can
share these common attributes. We apply the same abstraction
to the class AE Department.

C. Defining Constraints

We have our class diagrams defined for AE Department
in Figure 1. We now can define constraints over our model by
using Object Constraint Language (OCL). Object Constraint
Language (OCL) is a part of the UML standard and is widely
used by modellers to write logical constraints for different
types of UML models including class diagrams and state
diagrams [24], [23]. In general, OCL is different from general-
purpose programming languages such as Java and C++. It is
a declarative language and its constructs are similar to First-
order Logic (FOL). OCL supports a variety of features includ-
ing: collection types (sets, bags, lists), quantifiers, navigation,
etc. The use of OCL in our model has several advantages: 1)
We are able to express constraints in a precise manner since
OCL is based on FOL. 2) We can adapt formal verification

techniques to verify the correctness of the model annotated
with OCL constraints.

For the class diagram in Figure 1, we have defined 10
constraints through class invariants over 4 different classes:
AE Department, Staff , Triage Staff and Patient.
These invariants are shown in Figure 2. A class invariant is
essentially a boolean expression such that it always evaluates
to true. The keyword context describes a particular class
where the invariants are defined under. For example, for
AE Department class it has 3 class invariants.

We now describe our 10 class invariants defined in terms
of their contexts.

• AE Department: this class defines 3 invariants.
The first invariant imposes a constraint that an
AE Department must have some staff members (size
attribute) and its maximum number of patients (capacity
attribute) that it can take in. self is an OCL keyword
here. This keyword specifies the context of a constraint. In
this example, the context here is class AE Department.
The second invariant indicates that there must be some
staff members working in the AE Department. The
staff used in this invariant is a navigation from the
class AE Department to Staff through the associa-
tion WorkFor. This captures the set of all staff mem-
bers who work in the AE Department. The operation
notEmpty() indicates that the set cannot be empty. Sim-
ilarly, the third invariant imposes a constraint that among
all the staff members working in the AE department there
must be someone who is a doctor. The exists here is a
quantifier that quantifies over the set of staff members
working in the department. To determine whether a staff
member is a doctor or not, we use the OCL built-in
predicate oclIsTypeOf() to ensure the staff type.

• Staff : We define two invariants for this class. The first
invariant states that for any two different staff members in
the hospital they must have different unique id numbers.
In other words, this invariant imposes a constraint that
every staff member must have a unique id. The opera-
tion allInstances() here returns a set of objects whose
type is Staff . Since the returned objects here is a set
(collection), we use forAll to quantify every object in
this set. Similarly, the second invariant states that among
all the staff members working in the hospital, some of
them have to be triage staff.

• Triage Staff : We define three invariants here and each
one specifies a particular staff type. For example, the
second invariant indicates that there must be some nurses.
Therefore, in an AE department we must have some
doctors, nurses and technicians as triage staff. Note that
the # symbol here denotes a particular value of an
enumeration type.

• Patient: We have two invariants defined here for pa-
tients. The first invariant captures a scenario that if
a patient’s status is Expectant or Immediate, then
this patient must be assigned to a doctor (or doctors).
Here, we use an attribute assigned to indicate whether

Fig. 1. The UML class diagram for AE Department.

a patient has been assigned to a doctor or not. The
second invariant implies that for every patient admitted
to the AE Department, the patient must be checked
by some staff members in the department. Note that the
staff returns a set of objects (staff members) through a
navigation from the class Patient to the Triage Staff .

IV. IMPLEMENTATION & EVALUATION

A. Implementation

We have implemented the class diagram shown in Figure
1 and OCL constraints in Figure 2 into USE. USE is a
UML modelling environment that employs its own textural
specification language to define the structural building blocks
of model-like classes and associations. It supports the OCL
expressions that can be used to define constraints and opera-
tions without any side effects [13]. We choose USE because
it fully supports OCL constructs and we are able to freely
define, evaluate, and validate different types of constructs.
The full USE specification for our model is available at:
http://www.cs.nuim.ie/∼haowu/issc/AE Department.use.

B. Evaluation

To formally evaluate our model, we focus on answering the
following two research questions.

• RQ1. How can we formally prove correctness of our
model ?

• RQ2. How efficiently can we produce valid instances
of our model ?

RQ1. To answer the first research question, we need to show
that there are no constraint conflicts in our model along with
10 class invariants. In other words, we show that our model
is consistent. In order to do that, we map our model along
with 10 class invariants into First-order Logic (FOL) formulas
and prove these formulas by testing the satisfiability via a
Satisfiability Modulo Theories (SMT) solver [9]. We say a
formula F is satisfiable iff there exists one assignment in its
truth table that can make F evaluate to true. Determing a
propositional formula is satisfiable or not is NP-complete 1,
and deciding satisfiability of a FOL is undecidable in general

1This is known as the boolean satisfiability (SAT) problem

http://www.cs.nuim.ie/~haowu/issc/AE_Department.use

c o n t e x t AE Department
inv1 : s e l f . s i z e >0 and s e l f . c a p a c i t y >0
inv2 : s e l f . s t a f f −>notEmpty ()
i nv3 : s e l f . s t a f f −>e x i s t s (s | o c l I s T y p e O f (Doc to r))

c o n t e x t S t a f f
i nv4 : S t a f f . a l l I n s t a n c e s ()−> f o r A l l (s1 , s2 | s1<>s2 i m p l i e s s1 . i d <> s2 . i d)
i nv5 : S t a f f . a l l I n s t a n c e s ()−> e x i s t s (s | s . t r i a g e s t a f f = t r u e)

c o n t e x t T r i a g e S t a f f
i nv6 : T r i a g e S t a f f . a l l I n s t a n c e s ()−> e x i s t s (s | s . k ind =# Doc to r)
i nv7 : T r i a g e S t a f f . a l l I n s t a n c e s ()−> e x i s t s (s | s . k ind =# Nurse)
inv8 : T r i a g e S t a f f . a l l I n s t a n c e s ()−> e x i s t s (s | s . k ind =# T e c h n i c i a n)

c o n t e x t P a t i e n t
i nv9 : P a t i e n t . a l l I n s t a n c e s ()−> f o r A l l (p | p . s t a t u s =# E x p e c t a n t o r

p . s t a t u s =# Immedia te i m p l i e s p . a s s i g n e d = t r u e)
inv10 : P a t i e n t . a l l I n s t a n c e s ()−> f o r A l l (p | p . s t a f f −>notEmpty ())

Fig. 2. The 10 constraints defined as class invariants for the model in Figure 1.

2[7], [5].

An SMT solver consists of multiple decision procedures
that take in a number of FOL formulas and determine whether
formulas are satisfiable or not in an efficient manner. Many
challenging problems and proofs in software engineering can
be cast to the problem of testing the satisfiability of FOL
formulas such as program synthesis, type checking, model
checking, and test case generation [17][25][4][31].

For our model, we also use this idea. Our proof of the
correctness can be divided as three steps: we first define the
correctness of our model, then map our model into a set of
FOL formulas, and lastly we use an SMT solver to prove that
our formulas are correct.

We first define the correctness of our model as follows:

Definition 2. A model is consistent/correct iff its correspond-
ing FOL formulas are satisfiable.

By the above definition, we map our model along with
10 invariants into FOL formulas. The mapping of each class
in the model in Figure 1 is very straightforward. We sim-
ply use a predicate to denote each class and association.
For an enumeration type such as Patient Status, we use
a function to denote its possible ranges. Since each class
invariant imposes a constraint over the model, we map it
individually to a corresponding FOL formula. For simplicity,
we only show the mapping of 3 invariants here: inv1, inv5
and inv10. The full mappings can be found at our website:
http://www.cs.nuim.ie/∼haowu/issc/proof.smt2.

2Note that some of FOL theories are decidable.

For inv1, we map it to the following formula:

∀o : Int. TypeDept(o)
⇒
(
DeptSize(o) > 0 ∧DeptCap(o) > 0

) (1)

TypeDept is a type predicate that determines whether an
object o is of AE Department type. The attributes size and
capacity are mapped to two functions DeptSize : Int→ Int
and DeptCap : Int→ Int since they are both integer types.

Similarly, we map inv5 to Formula 2, where StaffTri :
Int → Bool is a function capturing the boolean attribute
triagestaff defined in Staff class in Figure 1.

∃o : Int. TypeStaff(o)⇒ StaffTri(o) = true (2)

Invariant inv10 imposes a constraint on an association
(Check) between the Patient and Triage Staff classes.
To capture this constraint over an association, we design a
binary predicate RelCheck : Int × Int → Bool to denote
whether two objects are in an association. Therefore, Formula
3 expresses that every patient must be checked by some triage
staff.

∀o1 : Int ∃o2 : Int
(
TypePatient(o1)∧

TypeTriStaff(o2)
)
⇒ RelCheck(o1, o2)

(3)

Note that here we consider that binary association Check
as an asymmetric relation between a triage staff and a patient.
For example, a triage staff can check a patient but not the
other way around.

Now let Fi be an FOL formula representing the ith class
invariant in a model. To prove a model is consistent, we
conjoin each Fi and ask an SMT solver to check whether
Formula 4 is satisfiable. The SMT solver used for our model is

http://www.cs.nuim.ie/~haowu/issc/proof.smt2

Z3 [9], and the result from the solver is ’sat’ representing that
our formulas are satisfiable. Thus, now we can formally show
that our model in Figure 2 along with the 10 class invariants
in Figure 1 are consistent. ∧

Fi (4)

RQ2. To answer the second research question, we adapt an
existing instance generation technique that is prototyped into
an automatic tool called: ASMIG [32]. ASMIG reads in a
UML class diagram annotated with OCL constraints, translates
these into a set of SMT2 formulas, and calls a state-of-the art
SMT solver to produce instances that provably conform to the
constraints defined over a UML class diagram [9].

We configure ASMIG with a different number instances for
each class to be generated and conduct 5 runs. All runs were
performed on an Intel(R) i3 machine with 4 GB memory.
The results of each run are recorded in Table I. In order to
choose an appropriate number of instances to be generated for
each class, we use ASMIG’s internal module to automatically
calculate a suitable number of instances for each class. We
then ask ASMIG to enumerate different valid instances, and
gradually increase this number for each run to measure the
efficiency of generating instances for our model. ASMIG
successfully finds 100 valid instances within 1 second. Each
instance found by ASMIG is guaranteed to conform to the
constraints defined in Figure 2. Figure 3 shows one example
of generated instances.

Number of Runs Time (in ms) Number of Instances
run 1 468 10
run 2 500 50
run 3 717 70
run 4 907 100
run 5 1023 120

TABLE I
THE RESULTS OF 5 RUNS. THE COLUMN ‘NUMBER OF INSTANCES’

DENOTES THE NUMBER OF INSTANCES GENERATED BY ASMIG.

Fig. 3. One instance that provably conforms to our model in Figure 1 and the
OCL constraints in Figure 2. Note that this instance is processed to remove
some attributes for simplicity.

V. LESSONS LEARNT & LIMITATION

In this section, we report our lessons learnt from using the
Model Driven Engineering (MDE) approach to model an AE
department, and identify any limitations that have emerged.

Lessons Learnt. We have learned three important lessons from
our experience of using MDE. 1) We found that it is easy to
use class diagrams to model the relationships between patients
and an AE department. This is mainly because UML class
diagrams are naturally designed for capturing the relationships
between different entities. 2) By writing constraints in Object
Constraint Language (OCL), we are able to express rules
which cannot be addressed by just using UML class dia-
grams. Therefore, using UML class diagrams along with OCL
constraints is a much more expressive approach to capturing
complicated rules such as the priority given to a patient based
on his/her status (inv9 in Figure 2). 3) The verification tech-
nique used for verifying our models establishes our confidence
in the actual implementation. We are guaranteed that our
model is consistent and that there are no conflicts between
the constraints.
Limitation. The limitation of our approach is that the cost
of designing OCL constraints can be high. This is because
writing a precise OCL constraint for a rule described in natural
language is sometimes not straightforward. However, this can
be avoided in a real-life implementation scenario by pairing a
modelling expert with a domain specific expert. In this way, the
domain specific expert is responsible for helping the modelling
expert to digest the rules correctly. This may also require
that the modelling expert iteratively uses instance generation
techniques to generate valid instances and the domain expert
validates that each one of them does indeed meets the rules.

VI. CONCLUSION

In this paper, we have shown an MDE-based approach to
model the static aspects of an AE department through a UML
class diagram annotated with OCL constraints, and verified
our model by using SMT-based verification techniques. The
evaluation results suggest that our approach is very promising.
This approach is unique in two ways: 1) By integrating OCL
into our model we are able to specify rules that are not
expressible in UML class diagrams. 2) By logically verifying
our model via SMT solving, we are confident about our design
before implementing it into an actual software artefact. More
importantly, this work lays the foundation of our first step
towards a complete framework for modelling a health care
system.

In the future, we intend to incorporate both static and
dynamic models to build a framework based on more real-
istic assumptions such as patient flow and health information
exchange. This involves specifying OCL constraints over dy-
namic models with respect to the information described in the
static models. A more demanding problem is then to ensure
consistency between the two kinds of models. To tackle this,
one of the possible directions to explore is that of designing
a set of new mappings from both kinds of models to a logic
formalism that can be formally verified using an SMT solver.

REFERENCES

[1] Object Management Group. http://www.omg.org.
[2] Norazura Ahmad, Noraida Abdul Ghani, Anton Abdulbasah Kamil,

and Razman Mat Tahar. Modeling emergency department using a
hybrid simulation approach. In IAENG Transactions on Engineering
Technologies, pages 701–711. Springer, 2013.

[3] Ines Ajmi, Hayfa Zgaya, Lotfi Gammoudi, Slim Hammadi, Alain
Martinot, Rgis Beuscart, and Jean-Marie Renard. Mapping patient
path in the pediatric emergency department: A workflow model driven
approach. Journal of Biomedical Informatics, 54:315–328, 2015.

[4] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania.
Bounded model checking of software using SMT solvers instead of
SAT solvers. International Jounrnal on Software Tools for Technology
Transfer, 11(1):69–83, Jan 2009.

[5] Mordechai Ben-Ari. First-order logic: Undecidability and model theory
*. In Mathematical Logic for Computer Science, pages 223–230.
Springer, 2012.

[6] M. Chong, M. Wang, X. Lai, B. Zee, F. Hong, E. Yeoh, E. Wong,
C. Yam, P. Chau, K. Tsoi, and C. Graham. Patient flow evaluation with
system dynamic model in an emergency department: Data analytics on
daily hospital records. In 2015 IEEE International Congress on Big
Data, pages 320–323, June 2015.

[7] Stephen A. Cook. The complexity of theorem-proving procedures. In
3rd Annual ACM Symposium on Theory of Computing, pages 151–158.
ACM, 1971.

[8] Alberto Rodrigues da Silva. Model-driven engineering: A survey
supported by the unified conceptual model. Computer Languages,
Systems & Structures, 43:139–155, 2015.

[9] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 337–340, Budapest,
Hungary, 2008. Springer.

[10] Hans Demski, Sebastian Garde, and Claudia Hildebrand. Open data
models for smart health interconnected applications: the example of
openehr. BMC Medical Informatics and Decision Making, 16(1):137,
2016.

[11] T. Gherbi, D. Meslati, and I. Borne. Mde between promises and chal-
lenges. In 2009 11th International Conference on Computer Modelling
and Simulation, pages 152–155, March 2009.

[12] GNUHealth. http://http://health.gnu.org/support.html.
[13] Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-

based specification environment for validating UML and OCL. Science
of Computer Programming, 69(1-3):27–34, 2007.

[14] Object Management Group. Borland technology builds advanced par-
liamentary work-flow system, May 2016.

[15] Object Management Group. Deutsche bank bauspar ag uses arcstyler
to embed existing cobol mainframe application into modern web-based
systems, May 2016.

[16] Object Management Group. Siemens railcom and model driven archi-
tecture, May 2016.

[17] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. Synthesis of loop-free programs. In The 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 62–73. ACM, 2011.

[18] L. Jiang, B. Xu, C. Xie, and H. Cai. A framework of emergency
clinical decision support system based on mda and resource model.
In Proceedings of the 2014 IEEE 18th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), pages 451–
456, May 2014.

[19] Farid Lahboube and Ounsa Roudies Nissrine Souissi. Building a his
supervision metamodel. In 11th System of Systems Engineering, pages
1–6. IEEE, 2016.

[20] LibreHealth. http://librehealth.io/.
[21] HongXing Liu, YanSheng Lu, and Qing Yang. Xml conceptual modeling

with xuml. In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 973–976, New York, NY, USA,
2006. ACM.

[22] Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for
Model-Driven Architectures. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[23] Object Management Group. Unified Modeling Language, Infrastructure
Version 2.4.1, August 2011.

[24] Object Management Group. Object Constraint Language Version 2.3.1,
Jan 2012.

[25] Zvonimir Pavlinovic, Tim King, and Thomas Wies. Finding minimum
type error sources. In The 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, pages 525–
542. ACM, 2014.

[26] Wullianallur Raghupathi and Amjad Umar. Exploring a model-driven
architecture (mda) approach to health care information systems devel-
opment. International Journal of Medical Informatics, 77(5):305–314,
2008.

[27] Chris Raistrick. Uml modeling languages and applications. chapter
Applying MDA and UML in the Development of a Healthcare System,
pages 203–218. Springer-Verlag, Berlin, Heidelberg, 2005.

[28] MD Health Tools. https://projects.eclipse.org/projects/modeling.mdht.
[29] Boukaye Boubacar Traore, Bernard Kamsu-Foguem, and Fana Tangara.

Integrating MDA and SOA for improving telemedicine services. Telem-
atics and Informatics, 33(3):733 – 741, 2016.

[30] J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in
model-driven engineering. IEEE Software, 31(3):79–85, May 2014.

[31] Hao Wu. Generating metamodel instances satisfying coverage criteria
via SMT solving. In The 4th International Conference on Model-Driven
Engineering and Software Development, pages 40–51, 2016.

[32] Hao Wu, Rosemary Monahan, and James F. Power. Exploiting attributed
type graphs to generate metamodel instances using an SMT solver.
In 7th International Symposium on Theoretical Aspects of Software
Engineering, Birmingham, UK, 2013.

[33] M. Xu, T. C. Wong, K. S. Chin, S. Y. Wong, and K. L. Tsui. Modeling
patient visits to accident and emergency department in hong kong. In
2011 IEEE International Conference on Industrial Engineering and
Engineering Management, pages 1730–1734, Dec 2011.

	Introduction
	Related Work
	The Approach
	Overview
	Modelling AE Department
	Defining Constraints

	Implementation & Evaluation
	Implementation
	Evaluation

	Lessons Learnt & Limitation
	Conclusion
	References

