
Verifying UML Models Annotated with OCL Strings
Ankit Jha

Ankit.Jha.2021@mumail.ie
Maynooth University

Maynooth, Kildare, Ireland

Rosemary Monahan
Rosemary.Monahan@mu.ie

Maynooth University
Maynooth, Kildare, Ireland

Hao Wu
haowu@cs.nuim.ie
Maynooth University

Maynooth, Kildare, Ireland

ABSTRACT
The Object Constraint Language (OCL) is a specification language
that allows users to write precise constraints or rules over models
that are built using the Unified Modeling Language (UML). Many
OCL constraints used in real-world models specify a set of rules
over string data types. This makes reasoning about UML models
that are annotated with OCL string constraints very challenging. In
this short paper, we demonstrate the feasibility of using Satisfiabil-
ity Modulo Theories (SMT) solvers for verifying OCL string-type
constraints. Specifically, we compare the string reasoning capabili-
ties of three SMT solvers in terms of their usability, performance,
and the diversity of instances generated. We believe that the Model-
Driven Engineering (MDE) community can benefit from our pre-
liminary results in identifying the strength and limitations of the
state-of-the-art SMT solvers for OCL string verification.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation.

KEYWORDS
OCL, SMT solver, String Constraints

ACM Reference Format:
Ankit Jha, Rosemary Monahan, and Hao Wu. 2024. Verifying UML Models
Annotated with OCL Strings. In ACM/IEEE 27th International Conference on
Model Driven Engineering Languages and Systems (MODELS Companion ’24),
September 22–27, 2024, Linz, Austria. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3652620.3687822

1 INTRODUCTION
The Unified Modeling Language (UML) is widely used in building
different types of software models. It is the central element for
Model Driven Engineering (MDE). The graphical notations of UML
[4, 23] not only allow software engineers to model different aspects
of a complex system but also provide ways of communications
among team members. Meanwhile, the Object Constraint Language
(OCL) is a formal language that allows users to specify rules over
UML models [9, 12, 20]. When a UML model is annotated with OCL
constraints, the model possesses a high level of abstraction and
precision for describing system properties and behaviors. Among

MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3687822

different types of constraints, OCL string constraints are particu-
larly important for writing and specifying rules associated with
strings. Many business rules or system properties can be captured
using OCL string constraints. For example, specifying that a user-
name or password must follow a specific pattern can be efficiently
done with OCL string constraints. These constraints are extremely
helpful in defining such requirements. However, their complexity
and expressiveness poses a big challenge to verification. Recently,
efforts were made by [11] using an automated approach grounded
in Constraint Programming to verify UML models annotated with
OCL constraints including string. Simulink/Stateflow, with the aid
of Simulink Design Verifier, has been used to verify the UML model
of an automatic train control system [17]. An approach to manually
translate natural language requirements into an enhanced UML
model is proposed in [15] later which is translated and verified by
means of the NuSMV model checker. These approaches struggle
with scalability and complexity, are often domain-specific, require
high manual effort, and can be prone to translation errors while re-
quiring significant expertise. [22] gives an approach that translates
string constraint problems into propositional logic and solves them
using a SAT (Boolean Satisfiability) solver[19]. It is designed to be
competitive with existing string solvers, especially for problems
that can be expressed into the logical fragment supported by their
tool. This approach is limited because it only works with a specific
type of string problem, so it can’t handle more general or complex
string issues that require operations outside its supported range.
With recent advances in SatisfiabilityModulo Theories (SMT) solvers
for solving string constraint [6], it is now possible to translate OCL
string constraints directly to string functions for SMT solver. To
formally verify a UMLmodel that is annotated with OCL string con-
straints, we aim to generate an instance of that model that satisfies
its constraints. In this paper, we investigate such translation and
compare different SMT solvers in solving OCL string constraints.
In particular, we report our findings and list the best SMT solver for
verifying UML models are annotated with OCL string constraints.
In short, our contributions of this paper can be summarised as
follows:

• We define a mapping between common OCL string opera-
tions to SMT encodings.

• Weperformed a detailed comparison of 3 SMT (string) solvers
to show their strengths and limitations in verifying OCL
string data types.

2 BACKGROUND
2.1 OCL String
OCL allows users to define constraints and rules. Among OCL’s
arsenal of features, the OCL String [20] stands out as an impor-
tant feature for modeling. String-based OCL constraints are widely

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0009-0008-9159-9739
https://doi.org/10.1145/3652620.3687822
https://doi.org/10.1145/3652620.3687822
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3687822&domain=pdf&date_stamp=2024-10-31

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Ankit Jha, Rosemary Monahan, and Hao Wu

used in several real-world example such as password, email, etc.
Therefore, it is important to ensure their consistency. As a funda-
mental type within OCL, the OCL String represents a sequence of
characters, providing a flexible and versatile method for express-
ing textual information. The introduction of the OCL String data
type addresses several significant needs in modeling and constraint
specification [18]. String manipulation operations in OCL allow
us to concatenate, split, and match strings. This is essential when
dealing with complex data transformations or when constructing
strings based on certain conditions. It enhances expressiveness by
allowing the specification of constraints concerning textual data,
essential for modeling real-world entities and operations involving
text-based attributes such as usernames or messages. It facilitates
enhanced verification by allowing constraints to validate object
states at runtime or design time, ensuring fidelity to specified re-
quirements such as non-empty strings or strings with predefined
lengths [10].

2.2 SMT Solver
In recent years we have seen a abundance of research on string
constraints, particularly SMT solvers demonstrate promising re-
sults in the area [1, 2, 8, 21]. In the context of the Object Constraint
Language (OCL), string-based operations play a crucial role in ex-
pressing constraints and specifying conditions related to string ma-
nipulation [24]. However, SMT solvers struggle with the complex-
ity of string operations, especially when dealing with unbounded
lengths, quantifiers, and large-scale models, which can lead to per-
formance issues, incomplete solutions, and a gap in understanding
and identifying the most appropriate SMT solver for efficiently
handling string-based constraints annotated with quantifiers, fur-
ther highlighting the necessity for ongoing improvements in solver
capabilities. For this research, we initially selected five SMT solvers:
Z3-str3 [5], Z3-noodler [14], Z3 [7], CVC5 [3] and Ostrich [13].
These SMT solvers were selected based on popularity, performance,
specialization and usability. After careful investigation, we decided
to eliminate z3-str3 and z3-noodler. This is because they have poor
performance with quantified formulas and often fail to finish verifi-
cation within acceptable time frame. Z3 provides a powerful string
reasoning engine that allows users to reason about operations over
strings such as concatenation, string matching and substring ex-
traction. This is useful in detecting vulnerabilities in programs that
handle user input, ensuring robustness and reliability [16]. On the
other hand, CVC5 is capable of reasoning about word equations
with code that is possible to efficiently convert between strings
and integers [25]. Ostrich is a robust string solver known for its
backwards propagation technique. It is based on the idea of com-
puting pre-images of regular expression constraints. Its decision
procedure is designed for straight-line formulas [13].

3 FROM OCL STRING CONSTRAINTS TO SMT
FORMULAS

In this Section, we present how to map each OCL string operation
to a SMT formula that can be verified/solved by any SMT solver
that supports SMTLIB 2.0. In fact, the mapping is straightforward
since many string operations are directly supported by SMT solvers.
Table 1 summarises the mapping from OCL string operations to

corresponding SMT string functions. With these mappings, we now
can translate OCL constraints into SMT formulas.

String Operation SMT String Function
Concatenation (𝑠𝑡𝑟1 ∧ 𝑠𝑡𝑟2)
size (len (𝑠𝑡𝑟))
Index Of (indexof (𝑠𝑡𝑟1 𝑠𝑡𝑎𝑟𝑡_𝑙𝑒𝑛𝑔𝑡ℎ))
toUpperCase (𝑠𝑡𝑟1)∧𝑟𝑒. ∗ (𝑟𝑒.𝑟𝑎𝑛𝑔𝑒 (′𝐴′,′ 𝑍 ′))
toLowerCase (𝑠𝑡𝑟1)∧𝑟𝑒. ∗ (𝑟𝑒.𝑟𝑎𝑛𝑔𝑒 (′𝑎′,′ 𝑧′))

Table 1: Mapping table for translating OCL string operations
to SMT string functions.

Now, we use a sample UML model shown in Figure 2 to illustrate
detailed mappings. This model has one class called 𝑃𝑒𝑟𝑠𝑜𝑛 along
with 9 OCL invariants, as listed below:

(1) Valid First Name: Size of the first name is greater than 5
characters.

(2) Valid First Name Character: First Name should be combina-
tion of lowercase characters a-z.

(3) Valid Last Name: Size of the last name is greater than 5
characters.

(4) Valid Last Name Character: Last Name should be combi-
nation lowercase characters a-z and uppercase characters
A-Z.

(5) Valid Email Address: Email should follow a pattern of first
name "." last name "@gmail.com"

(6) Valid ZIPcode Pattern: ZIPcode should be 5 character in
length and should be a combination of uppercase characters
A-Z and digits 0-9.

(7) Valid Area Code: First 2 characters of ZIPcode.
(8) Valid Street Code: Last 2 characters of ZIPcode.
(9) Valid Account Number: A number between 10000 and 99999.

We now take invariants (1) and (2) as our mapping example. In or-
der to map the two invariants to SMT formulas, we first introduce
two additional functions (1) 𝑂id : 𝐼𝑁𝑇 → 𝐼𝑁𝑇 indicates the iden-
tification of an object in memory and (2) 𝑇Person : 𝐼𝑁𝑇 → 𝐵𝑂𝑂𝐿

takes an identification of an object and returns whether this object
is a type of 𝑃𝑒𝑟𝑠𝑜𝑛. This follows the encoding proposed in [26].
In general, each invariant is mapped to a first-order formula. For
example, invariant (1) can be mapped to the following SMT formula
with a string function 𝑠𝑡𝑟 .𝑙𝑒𝑛 to constrain the length of a string:

∀𝑥 ∈ Int(Person(𝑂id (𝑥)) → (str.len(first_name(𝑂id (𝑥))) ≥ 5))
Invariant (2) involves a constraint stating a combination of lower-
case character 𝑎 and 𝑧. This can be directly mapped to the string
function 𝑟𝑒.𝑟𝑎𝑛𝑔𝑒 . Hence, the final formula for invariant (2) is as
follows:

∀𝑥 ∈ Int (Person(𝑂id (𝑥)) → (str.in.re(first_name(𝑂id (𝑥))∧
re.*(re.range(′𝑎′,′ 𝑧′)))))
Here 𝑟𝑒.𝑟𝑎𝑛𝑔𝑒 (′𝑎′,′ 𝑧′) gives a regular expression matching any
single character from a to z.
Let’s take invariants (3), (4) and (8) as further examples. These invari-
ants use string operations 𝑈𝑝𝑝𝑒𝑟𝐶𝑎𝑠𝑒 , 𝐿𝑜𝑤𝑒𝑟𝐶𝑎𝑠𝑒 and 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔.

Verifying UML Models Annotated with OCL Strings MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Model Name OCL String Operations
Size Concate Substring toInteger toReal toUpperCase toLowerCase IndexOf toBoolean

Account ✓ ✓ ✓ ✓
Research ✓ ✓ ✓ ✓
Animal ✓ ✓ ✓ ✓ ✓
Atom ✓ ✓ ✓ ✓ ✓ ✓
CivilStatus ✓ ✓ ✓ ✓ ✓ ✓
eShop ✓ ✓ ✓ ✓ ✓ ✓
Person ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sales ✓ ✓ ✓ ✓
Partnership ✓ ✓ ✓ ✓ ✓ ✓
Student ✓ ✓ ✓ ✓

Table 2: Our benchmark consists of 10 UML class diagrams with a total of 55 OCL string invariants. Each class diagram uses
different OCL string operations.

With help of string functions in SMT, we can map them to the
following formulas:

∀𝑥 ∈ Int (Person(𝑂id (𝑥)) → (str.len(last_name(𝑂id (𝑥))) ≥ 5))

∀𝑥 ∈ Int(Person(𝑂id (𝑥)) → str.in.re(last_name(𝑂id (𝑥))∧
re.*(re.union(re.range(′𝑎′,′ 𝑧′) ∧ re.range(′𝐴′,′ 𝑍 ′)))))

∀𝑥 ∈ Int(Person(𝑂id (𝑥)) → AreaCode(str.at(ZIPCode(𝑂id (𝑥)), 4)))

The formulas above represent that for every person, their last_name
must be longer than 5 characters (implemented with 𝑠𝑡𝑟 .𝑙𝑒𝑛). Here
𝑟𝑒.𝑟𝑎𝑛𝑔𝑒 (′𝑎′,′ 𝑧′) gives a regular expression matching any single
character from ’a’ to ’z’ and 𝑟𝑒.𝑟𝑎𝑛𝑔𝑒 (′𝐴′,′ 𝑍 ′) gives a regular ex-
pression matching any single character from ’A’ to ’Z’, which is
held with union between them. The area code is determined by the
help of 𝑠𝑡𝑟 .𝑎𝑡 that performs substring operation.

4 EXPERIMENTS & RESULT
Benchmark: To evaluate the efficiency of each SMT solver, we have
created 10 models and added 55 OCL string invariants (constraints)
as our benchmark. Table 2 lists our benchmark that contains differ-
ent OCL string operations. For each model in this benchmark, we
add different string operations such as 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛, 𝐿𝑜𝑤𝑒𝑟𝐶𝑎𝑠𝑒 ,
𝑈𝑝𝑝𝑒𝑟𝐶𝑎𝑠𝑒 , 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 and 𝑆𝑖𝑧𝑒 . We did not cover 𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟 and
𝑡𝑜𝑅𝑒𝑎𝑙 string operations because there is no direct function support
to convert a string into an 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 or 𝑅𝑒𝑎𝑙 . Our main reason for
including these operations is (1) to cover all OCL string operations
as many as possible and (2) to impose a significant challenge on the
solvers. This ensures a comprehensive evaluation of each solver’s
capabilities in handling complex and diverse string constraints. For
instance, some string constraints might involve concatenating two
strings, while others ensures that the resulting string contains a
specific uppercase character. Another type of challenging string
constraint involves the length of a string must fall within a prede-
termined range and contain a specific pattern of uppercase/lower
case.
Setup: To compare different SMT solvers, we run our experiment
on an Apple Macbook air with specification as an Apple M1 chip,
an 8-core GPU, and 8 GB memory. The SMT solvers used in our
experiment are Z3 version: 4.12.2, CVC5 version:1.0.5 and Ostrich

version:1.3. We have written a simple python script that can au-
tomatically produce a set of first-order formulas from OCL string
operations (as mentioned in Table1).
Experiment: The experiment is performed on our benchmark
shown in Table 2. Our aim is to determine not only if the solver can
find a solution but also to measure the time required to solve these
constraints. We ask each solver (with a timeout of 600 seconds)
to generate 1, 5, 10 and 15 instances for each model, and we then
record the time taken by each solver.
Results: The results shown in Table 3 demonstrate the efficiency
and effectiveness of each solver in successfully finding solutions.
Overall, Z3 excelled consistently by solving all string constraints
without timing out, showcasing its efficiency and reliability. CVC5
manages to generate a smaller number of instances but often timed
out on larger ones. Ostrich frequently timed out on larger number
of instances, performing well enough on simpler models but strug-
gling with more complex string constraints. All solvers encounter
significant challenges with 𝐴𝑐𝑐𝑜𝑢𝑛𝑡 , 𝑆𝑎𝑙𝑒𝑠, and 𝑃𝑎𝑟𝑡𝑛𝑒𝑟𝑠ℎ𝑖𝑝 mod-
els, especially for larger number of instances. CVC5 and Ostrich
frequently timeout due to the intricate string operations and con-
straints, indicating scalability issues and inefficiencies in handling
extensive string manipulations and higher computational complex-
ity. Based on the experimental results, Z3 has the best performance,
consistently handling all instance sizes without timing out. It proves
to be the most capable and efficient in processing OCL string op-
erations within the allocated time frame. This makes Z3 a reli-
able choice for verifying UML models annotated with OCL string
constraints. For the detailed results and encodings, please see the
GitHub Repository.1

5 DISCUSSION
Performance: Figure 1 plots the time taken by Z3 for generating 1
instances. Our analysis suggests that on average, Z3 is 200x more
efficient than CVC5 and upto 4500x more efficient than Ostrich. The
time taken to solve constraints using SMT solvers is significantly
influenced by the number of quantifiers in a formula. In general,
the nested quantifiers cause more challenging for the solvers.
From Figure 3 we conclude that the time required to generate mod-
els for 5, 10, and 15 instances increases significantly. This is mainly
due to generating unique instances. This means each instance gen-
erated from solvers must be different from previous ones.

1https://github.com/AnkitMU/OCL

https://github.com/Z3Prover/z3/releases/tag/z3-4.12.2
https://github.com/cvc5/cvc5/releases/tag/cvc5-1.0.5
https://github.com/uuverifiers/ostrich/releases/tag/v1.3
https://github.com/AnkitMU/OCL

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Ankit Jha, Rosemary Monahan, and Hao Wu

Model Z3 CVC5 Ostritch
1 5 10 15 1 5 10 15 1 5 10 15

Account 0.17 0.78 3.53 10.42 0.30 433 time out time out 0.78 21.05 time out time out
Research 0.55 1.53 4.50 19.25 2.13 time out time out time out 0.81 19.68 time out time out
Animal 0.16 0.37 1.14 2.21 0.26 1.26 317.81 time out 0.63 480 time out time out
Atom 0.06 0.11 0.38 0.91 0.17 1.14 45.45 197.51 0.83 19.28 time out time out

CivilStatus 0.07 0.13 0.49 0.78 0.29 32.42 time out time out 1.84 123.17 time out time out
eShop 0.16 0.30 1.02 2.06 0.50 5.08 time out time out 2.42 119.10 time out time out
Person 0.11 0.51 1.59 4.50 0.44 time out time out time out 2.55 284 time out time out
Sales 0.13 0.76 2.53 17.72 2.24 502 time out time out 1.53 time out time out time out

Patnership 0.38 4.72 18.10 174.82 0.30 136 time out time out 1.97 583 time out time out
Student 0.07 0.18 0.57 1.12 0.59 330 time out time out 1.64 178 time out time out

Table 3: Time taken in seconds by Z3, CVC5, Ostrich to generate 1,5,10,15 instances for our benchmark with a timeout of 600
seconds.

Figure 1: Comparison of Time(Seconds) taken by Z3, CVC5, Ostrich to generate 1 instance for our benchmark.

Figure 2: An example of a class diagram annotated with 9
OCL string invariants.

Usability: In term of popularity and usability, we conclude that
documentation for Z3 and CVC5 are comprehensive, providing de-
tailed user guides, API references and number of tutorials that cover
a wide range of use cases including support for multiple program-
ming languages such as Python, C++, and Java. Users can easily
integrate Z3 into their own projects. The active community around
Z3 and CVC5 is a significant advantage, with numerous discussions
and support available on platforms like GitHub, Stack Overflow,

Figure 3: Performance comparison of Z3 to generate 1, 5, 10
and 15 instances for given class diagram models

and specialized forums. Compare to Z3 and CVC5, Ostrich has
a moderate amount of documentation, mostly from research ini-
tiatives and academic papers. Although its API documentation is
not as comprehensive as those of its more well-known peers, its
speciality in string constraint solving makes it remain as a good
solver. Despite its small community and documentation. In case
of ostrich, we had to contact specific developers to get detailed
technical details in order to retrieve models from solver.

Verifying UML Models Annotated with OCL Strings MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Diversity: By diversity, we refer to the varieties of instances gener-
ated by the SMT solvers. This simplymeans that different characters
in a string. We believe this is an important character. This is because
(1) it is useful to use these strings as test cases for testing OCL static
analysers or parsers. (2) it is easier to further generate meaningful
strings for the real-world scenarios. For example, a string “jack” is
much meaningful than a string “aaaa” in the context of generating
person’s name. When generating diverse strings we notice that
Z3 produces more interesting strings than CVC5 and Ostrich. For
instance, when generating strings for a person’s name for the first
time, Z3 outputs "lhphps," whereas CVC5 and Ostrich both produce
"aaaaaa." For the second time, Z3 provides "hsPsxp," demonstrating
a greater variety within the specified constraints. In contrast, CVC5
and Ostrich only yield "aaaaab." Although the strings produced by
the three solvers satisfy defined OCL invariants, the strings gen-
erated by Z3 are much more helpful if they are considered to be
test cases for string testing. Further, it is easier for users to tune
these string into actual meaningful strings in a particular context
by adding additional context constraints.
Lesson learned: From our analysis and experimentation, several
key insights emerged:

(1) Quantified formulaComplexity: Solving quantified string
formulas imposes significant challenge on SMT solvers.

(2) Superior Performance of Z3: Z3 consistently outperforms
other solvers, demonstrating efficiency and reliability in han-
dling OCL string constraints.

(3) Scalability Issues: The solving time is proportional to the
number of instances (5, 10, 15) as expected. As the number
of instances increases, solving times increase substantially,
indicating scalability issues in producing large number of
instances.

(4) Usability and Documentation: Z3 and CVC5 offer com-
prehensive documentation and community support, while
Ostrich, despite its specialization, lacks extensive user re-
sources.

6 CONCLUSION
In this paper, we present a mapping from OCL string constraints
to SMT formulas and a comparison of three SMT solvers in OCL
string verification. Our preliminary results help us and the MDE
community to identify the strength and limitations of the best three
string solvers in verifying OCL string constraints. In the future,
we aim to develop a framework for generating test cases for OCL
expressions based on user specified criteria. This would allow us
to understand or evaluate existing OCL analysis tools. We believe
both MDE and SMT communities can benefit from this automated
test case generation framework.

REFERENCES
[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš

Holík, Ahmed Rezine, and Philipp Rümmer. 2018. Trau: SMT solver for string
constraints. In 2018 Formal Methods in Computer Aided Design (FMCAD). 1–5.
https://doi.org/10.23919/FMCAD.2018.8602997

[2] Daniel Baier, Dirk Beyer, and Karlheinz Friedberger. 2021. JavaSMT 3: Interact-
ing with SMT solvers in Java. In International Conference on Computer Aided
Verification. Springer, 195–208.

[3] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Nötzli, et al. 2022. cvc5: A versatile and industrial-strength SMT solver. In

International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 415–442.

[4] Wahiba Ben Abdessalem Karaa, Zeineb Ben Azzouz, Aarti Singh, Nilanjan Dey,
Amira S. Ashour, and Henda Ben Ghazala. 2016. Automatic builder of class
diagram (ABCD): an application of UML generation from functional requirements.
Software: Practice and Experience 46, 11 (2016), 1443–1458.

[5] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A String Solver
with Theory-aware Heuristics. In 2017 Formal Methods in Computer Aided Design
(FMCAD). 55–59. https://doi.org/10.23919/FMCAD.2017.8102241

[6] Murphy Berzish, Mitja Kulczynski, FedericoMora, FlorinManea, Joel D. Day, Dirk
Nowotka, and Vijay Ganesh. 2021. An SMT Solver for Regular Expressions and
Linear Arithmetic over String Length. In Computer Aided Verification, Alexandra
Silva and K. Rustan M. Leino (Eds.). Springer International Publishing, Cham,
289–312.

[7] Nikolaj Bjørner and LevNachmanson. 2020. Navigating the Universe of Z3 Theory
Solvers. In Formal Methods: Foundations and Applications, Gustavo Carvalho and
Volker Stolz (Eds.). Springer International Publishing, Cham, 8–24.

[8] Alexandra Bugariu and Peter Müller. 2020. Automatically testing string solvers. In
Proceedings of the ACM/IEEE 42nd international conference on software engineering.
1459–1470.

[9] Loli Burgueño, Antonio Vallecillo, and Martin Gogolla. 2018. Teaching UML and
OCL models and their validation to software engineering students: an experience
report. Computer Science Education 28, 1 (2018), 23–41.

[10] Fabian Büttner and Jordi Cabot. 2012. Lightweight string reasoning for OCL. In
Modelling Foundations and Applications: 8th European Conference, ECMFA 2012,
Kgs. Lyngby, Denmark, July 2-5, 2012. Proceedings 8. Springer, 244–258.

[11] Jordi Cabot, Robert Clarisó, and Daniel Riera. 2009. Verifying UML/OCL operation
contracts. In International conference on integrated formal methods. Springer, 40–
55.

[12] Jordi Cabot and Martin Gogolla. 2012. Object constraint language (OCL): a
definitive guide. In International school on formal methods for the design of
computer, communication and software systems. Springer, 58–90.

[13] Taolue Chen, Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu.
2019. Decision procedures for path feasibility of string-manipulating programs
with complex operations. Proc. ACM Program. Lang. 3, POPL, Article 49 (jan
2019), 30 pages. https://doi.org/10.1145/3290362

[14] Yu-Fang Chen, David Chocholatỳ, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál,
and Juraj Síč. 2024. Z3-noodler: An automata-based string solver. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 24–33.

[15] Angelo Chiappini, Alessandro Cimatti, LucaMacchi, Oscar Rebollo, Marco Roveri,
Angelo Susi, Stefano Tonetta, and Berardino Vittorini. 2010. Formalization and
validation of a subset of the European Train Control System. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2.
109–118.

[16] Andreas A Falkner, Alois Haselböck, Gerfried Krames, Gottfried Schenner, Her-
wig Schreiner, and Richard Taupe. 2020. Solver Requirements for Interactive
Configuration. J. Univers. Comput. Sci. 26, 3 (2020), 343–373.

[17] Alessio Ferrari, Alessandro Fantechi, Stefania Gnesi, and Gianluca Magnani. 2013.
Model-Based Development and Formal Methods in the Railway Industry. IEEE
Software 30, 3 (2013), 28–34. https://doi.org/10.1109/MS.2013.44

[18] Enrico Franconi, Alessandro Mosca, Xavier Oriol, Guillem Rull, and Ernest Te-
niente. 2019. OCL FO: first-order expressive OCL constraints for efficient integrity
checking. Software & Systems Modeling 18, 4 (2019), 2655–2678.

[19] Weiwei Gong and Xu Zhou. 2017. A survey of SAT solver. In AIP Conference
Proceedings, Vol. 1836. AIP Publishing.

[20] The Object Management Group. 2014. https://www.omg.org/spec/OCL/2.4/PDF
[21] Anthony W Lin and Pablo Barceló. 2016. String solving with word equations and

transducers: towards a logic for analysing mutation XSS. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 123–136.

[22] Kevin Lotz, Amit Goel, Bruno Dutertre, Benjamin Kiesl-Reiter, Soonho Kong,
Rupak Majumdar, and Dirk Nowotka. 2023. Solving string constraints using SAT.
In International Conference on Computer Aided Verification. Springer, 187–208.

[23] Beatriz Pérez and Ivan Porres. 2019. Reasoning about UML/OCL class diagrams
using constraint logic programming and formula. Information Systems 81 (2019),
152–177.

[24] Andrew Reynolds, Andres Nötzli, Clark Barrett, and Cesare Tinelli. 2019. High-
Level Abstractions for Simplifying Extended String Constraints in SMT. In Com-
puter Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International
Publishing, Cham, 23–42.

[25] Andrew Reynolds, Andres Nötzli, Clark Barrett, and Cesare Tinelli. 2020. A
decision procedure for string to code point conversion. In International Joint
Conference on Automated Reasoning. Springer, 218–237.

[26] Hao Wu and Marie Farrell. 2021. A formal approach to finding inconsistencies in
a metamodel. Software and Systems Modeling 20, 4 (2021), 1271–1298.

https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1145/3290362
https://doi.org/10.1109/MS.2013.44
https://www.omg.org/spec/OCL/2.4/PDF

	Abstract
	1 Introduction
	2 Background
	2.1 OCL String
	2.2 SMT Solver

	3 From OCL String Constraints to SMT Formulas
	4 Experiments & Result
	5 Discussion
	6 Conclusion
	References

