
Step 0: An Idea for Automatic OCL Benchmark

Generation

Hao Wu

Department of Computer Science,
National University of Ireland, Maynooth

haowu@cs.nuim.ie

Abstract. Model Driven Engineering (MDE) is an important software
development paradigm. Within this paradigm, models and constraints
are essential components for expressing specifications of a software arte-
fact. Object Constraint Language (OCL), a specification language that
allows users to freely express constraints over different model features.
However, one major issue is that the lack of OCL benchmarks makes
difficult to evaluate existing and newly created OCL tools. In this paper,
we present our initial idea about automatic OCL benchmark generation.
The purpose of this paper is to show a developing idea rather than pre-
senting a more formal and complete approach. Our idea is to use an OCL
metamodel to sketch abstract syntax trees for OCL expressions, and solve
generated typing constraints to produce the concrete OCL expressions.
We illustrate this idea by using an example, discuss our work-in-progress
and outline challenges to be tackled in the future.

1 Introduction & Related Work

Object Constraint Language (OCL), as a specification language in Model Driven
Engineering (MDE), is formally used for writing rules that are not expressible
by using models [1]. It plays a central role in many model-based engineering do-
mains such as language engineering, model transformation and business process
modelling. One particular example is ATL, a model transformation language
that is built on top of OCL and it allows users to specify precise transformation
rules for a set of model features. On the other hand, users can use OCL for
different purposes including writing constraints/invariants for specific entities,
specifying pre/post conditions over operations or methods and running queries
over a set of features.

Recently, many approaches and techniques have been proposed for analysing
or verifying models annotated with OCL [2,3,4,5,6,7,8,9,10,11,12,13]. These ap-
proaches either provide comprehensive case studies or tool support [6,14,15,16]
for analysing OCL constraints. However, a major issue is the lack of OCL bench-
mark. This is difficult for users to evaluate or choose suitable OCL tools for their
own projects. This issue has recently been addressed by Gogolla and Cabot [17]
[18]. Forming a collection of OCL benchmarks is necessary for OCL communities.



Typically, there are two ways of forming such collections: (1) Extensively col-
lecting existing models that are annotated with OCL constraints from different
locations such as code repositories and modelling zoos [32]. (2) Automatically
generating a collection of OCL constraints with respect to user’s requirements.
For example, users may be interested in evaluating scalability of their own tools.
Thus, they need a large number of OCL expressions. Further, users may also
focus on evaluating a particular aspect of a tool such as conflict detection. In
this scenario, it would be very useful to automatically generate a large number
of conflicted OCL expressions.

In this paper, we propose an idea of automatic OCL benchmark generation.
We consider this idea as a complement to the idea of forming a benchmark via
manually collecting existing models annotated with OCL. By exploiting this idea,
users could create customised benchmarks to accommodate their own purposes
such as generating property-specific OCL expressions.

2 The Proposed Idea

Fig. 1. The overview of an idea for generating a OCL benchmark.

Our idea for automatic generating OCL benchmark is visualised in Figure
1. Given a number of OCL constraints to be generated, users first define the
properties for each OCL constraint. For example, a property call with a logic
operator over an attribute. Here, we consider these properties are described in
a standard OCL metamodel [1]. Second, we use a tree generator to generate the
shape of an abstract syntax tree (AST) for each OCL constraint. This tree gen-
erator consults both the OCL metamodel and OCL concrete syntax to produce
the ideal size of an AST, and generates a set of typing constraints for each AST.
These constraints restrict possible types on each node in an AST. We then use
an SMT solver to solve these constraints to derive a precise type for each node.
Finally, we traverse the AST and instantiate each node with a concrete value.
To form a OCL benchmark, we repeat these steps until the number of OCL
constraints a user asked for is met.

2.1 An Example

In this section, we describe a scenario to illustrate our idea of automatic OCL
benchmark generation. This scenario is based on our recent experience in eval-
uating a newly created OCL tool [19].



Figure 2 shows a UML class diagram that captures a relationship between
a doctor and accident & emergency department in a hospital. Now consider a
scenario where a user has already designed a tool for verifying OCL constraints,
and would like to evaluate the performance and scalability of this tool on the
OCL logical expressions with the model shown in Figure 2. In this case, existing
collected OCL examples such as those are in [17] and [18] are no longer suitable
for this scenario since they use different models and contain less number of con-
straints. Typically, measuring the performance and scalability of a tool involves
running against a large number of OCL constraints. Further, this user requires
a specific criteria that models must contain a large number of expressions using
logical operators. Therefore, it would be very useful to generate a customised
OCL benchmark for this specific scenario.

Fig. 2. A UML class diagram that represents a relationship between a doctor
and Accident & Emergency department in a hospital.

To generate OCL logical expressions for this model, we first allow users to
specify a type for each OCL constraint to be generated. To ensure the chosen
types are valid, we use the standard OCL metamodel as a reference. For example,
a user may select a property constraint for id attribute defined in the Staff class.
The property call of an OCL constraint corresponds to the PropertyCallExp in
the OCL metamodel that is shown in Figure 3. Note that a user may select the
same constraint type for multiple model features. For the reason of simplicity, we
assume that users only choose a constraint type involving a single model feature.

Fig. 3. A part of an OCL metamodel representing the relationship between two
classes: PropertyCallExp and Property.

Once the type of an OCL constraint has been fixed, we then use a tree
generator to sketch the shape of an abstract syntax tree based on consulting



the OCL concrete syntax. At this stage, users may specify a particular type
expression and tree size. For example, a user may select a binary expression
for a property constraint over the attribute id. The tree generator then tries
to generate a tree that has the specified size. However, the size may vary and
depends on OCL concrete syntax. For example, Figure 4 shows an example of a
generated abstract syntax tree for a binary expression. This tree has a size of 9,
the root R produces two other binary expressions: n1 and n2.

Fig. 4. An abstract syntax tree for a binary expression.

Now, we have the shape of an AST and the goal here is to work out correct
types. More importantly, we need to ensure the type information preserved in an
AST is consistent. For example, two boolean expressions cannot be connected by
an arithmetic operator such as + and −. In order to work out type information
for each node, we generate a set of typing constraints for an AST and solve these
constraints by using an SMT solver. To illustrate these typing constraints, we
use Figure 4 as an example.

Assume the AST in Figure 4 represents a binary expression that captures an
OCL property constraint for the attribute id in the class Doctor from Figure
2. Since this tree represents a binary expression, the root R must be a binary
operator such as > or and. Node n1 and n2 could be another two OCL expres-
sions containing two children nodes respectively. One of the possible kinds of
expressions is that n1 and n2 are two binary expressions as well. For the reason
of simplicity, let us assume that this is the case. If n1 is a binary expression over
id, then either n3 or n4 must be the attribute id1. Similarly, this is the same for
n5 and n6.

Thus, we now can generate the following typing constraints for the AST in
Figure 4.

(R ∈ OPl) ∧ (n1 ∈ OPc) ∧ (n2 ∈ OPc) ∧
(

T (n3) = INT
)

⊕
(

T (n3) = INT LITERAL
)

∧
(

T (n4) = INT
)

⊕
(

T (n4) = INT LITERAL
)

∧
(

T (n5) = INT
)

⊕
(

T (n5) = INT LITERAL
)

∧
(

T (n6) = INT
)

⊕
(

T (n6) = INT LITERAL
)

∧
Here, T is a function that returns a particular OCL type. Sets OPl and OPc

represent all possible binary operators. For the sub-tree that contains nodes n3
and n4, exactly one of the nodes has an INT type. This is because the attribute

1 In a more complex scenario, either n3 or n4 could also be an integer or an attribute.



id is an integer type. Since we consider a scenario that a constraint over a single
attribute, the other node must be an integer literal (INT LITERAL) type2.
Since each OCL constraint is a boolean expression and the tree represents a
binary expression, R must be a logical operator. This implies that nodes n1 and
n2 must be the operators that apply to two integer types and return a boolean
type. For example, comparison operators: > and <. Hence, we now can define
the following operators for OPl and OPc.

OPl = {and, or, xor, implies}
OPc = {>, >=, <, <=, <>, =}
To generate constraints for OPl and OPc, we use an integer vairable to encode

each operator and constrain this integer vairable to cover all possibilities. We
then use an SMT solver to solve generated typing constraints and interpret the
successful assignment for each node in the AST [20]. For example, Figure 5 (a)
shows an example of solved type constraints for the AST in Figure 4.

Finally, we instantiate an AST with concrete values. Currently, we use a
random value generation for each OCL literal type string,int and boolean. In
this example, we use attribute id for each INT and randomly choose two integers
for both INT LITERAL. The final resulting OCL constraint for the attribute
id in the class Doctor is shown in Figure 5 (b).

Fig. 5. (a) An example of solved typing constraints. (b) An abstract syntax tree
with concrete values.

3 Work In Progress

We have implemented this idea into a prototype tool: OCLGen. We use OCLGen
in our most recent work for generating a customised OCL benchmark to evaluate
a technique for finding achievable features and OCL constraint conflicts[19,31].
OCLGen uses the examples presented by Gogolla and Cabot as candidate mod-
els and further generates a much larger number OCL constraints based on the
calculated configuration [17]. The configuration contains a set of different pa-
rameters including number of the quantifiers, logical operators and navigations.
These generated OCL constraints cover a variety of features such as constraints
over multiple inheritances, the nested quantified OCL expressions and random
constraint conflicts. At the moment, OCLGen is able to handle the generation of

2 In a multiple attributes scenario, the node could be either an integer literal or another
integer type attribute



simple binary and quantified OCL expressions containing arithmetic, navigation
and logical operators. 3.

4 Challenges & Future Work

Though we have a working prototype for automatically generating OCL bench-
marks, there are quite a few much more challenging problems remain.

1. Choosing/Designing an appropriate domain-specific language for describing
benchmarks. Formally, users would be able to use a well-defined language
to describe the kinds of benchmarks to be generated. For example, allowing
users to quantify the number of operators in an OCL expression or specify
the type of constraints to be generated such as navigations. Recently, a
large number of OCL analysis and verification tools have been developed
[21,22,16,6]. However, not many of them evaluated their tools on a large
number of inconsistent OCL constraints. The challenge here is that this
language not only allows users to specify valid number of OCL constraints
to be generated but also constraints cause inconsistencies. The generated
benchmarks thus can be used for the purpose of evaluating the soundness of
an OCL analysis tool.

2. Measuring the generated computational complexity of OCL benchmarks us-
ing a set of metrics. Users may use different or the same OCL benchmarks
for evaluating existing, or their own OCL tools for different purposes. In this
context, a set of suitable metrics for a benchmark is necessary. Those metrics
can be used as a standard way of measuring the computational complexity
of an OCL benchmark so that researchers and users in the community could
have a clear idea of what tools are capable of. Even if the evaluation is not
performed on the same benchmark [23]. For example, the metrics may include
the measurement of the number of OCL data types, the maximum/minimum
(AST) size of generated OCL expressions, the depths of quantifiers, etc. Fur-
ther, a much more challenging problem here is that to automatically generate
a benchmark meeting those metrics so that users can use it for focusing on
a particular aspect of an evaluation.

3. Generating OCL benchmarks efficiently and effectively. Typically, the gener-
ation process should be completed within a reasonable time frame. As it can
be seen from the example in Section 2.1, the shape of an AST and its type
information can be naturally and formally tackled by constraints. The prop-
erties of an OCL expression such as the number of quantifiers can also be ex-
pressed as SAT/SMT constraints. The use of constraint solvers (SAT/SMT)
have been proven to be successful in many domains [24,25,7,26,27]. However,
one problem of those solvers is that they usually do not scale very well. Based
on our recent experience, we discover that sometimes those solvers may lose
accuracy when the problem size is too big [19]. This is probably caused by
the heuristic algorithms used within solvers. For this reason, the predica-
tion of how those solvers’ will performance on a particular problem could be

3 The fully generated benchmark is available at
https://github.com/classicwuhao/maxuse/tree/master/maxuse_examples/benchmark

https://github.com/classicwuhao/maxuse/tree/master/maxuse_examples/benchmark


helpful to tell users what to expect [28]. Additionally, a benchmark formed
by a mixture of manually created examples with generated ones could be a
practical way for determining where a numerous number of OCL constraints
needed.

In this paper, we have presented our initial idea of automatically generating
OCL benchmark by producing skeletons of OCL abstract syntax trees based on
an OCL metamodel and solving generated typing constraints for each AST. The
experience of using our prototype tool OCLGen is the very first step towards
proposing a complete framework for automatic OCL benchmark generation.

In the long term, we plan to tackle the above challenges individually and
continue extending our work in OCLGen. This involves investigating the design
of a domain-specific language for generating metrics-oriented OCL benchmarks.
Though we have done preliminary work on generating graph-oriented instances,
OCL constraint generation is much more challenging since we need to take many
aspects into account such as tree shapes and typing constraints [29,30]. Further,
we will also enhance our tree generator to generate more complex structures
such as queries over a collection data type. Our ultimate goal is to solve these
challenges listed above and build a framework for automatically generating cus-
tomised OCL benchmarks that can be used for evaluating OCL analysis and
verification tools to accommodate different user requirements.

References

1. Object Management Group: Object Constraint Language Version 2.4 (2014)

2. Beckert, B., Keller, U., Schmitt, P.H.: Translating the Object Constraint Lan-
guage into first-order predicate logic. In: Verify Workshop at FLoC,Copenhagen,
Denmark (2002)

3. Maraee, A., Balaban, M.: Efficient reasoning about finite satisfiability of UML
class diagrams with constrained generalization sets. In: 3rd ECMDA, Springer
(2007) 17–31

4. Brucker, A.D., Wolff, B.: HOL-OCL – A Formal Proof Environment for
UML/OCL. In: The 11th FASE, Springer (2008) 97–100

5. Kyas, M., Fecher, H., de Boer, F.S., Jacob, J., Hooman, J., van der Zwaag, M.,
Arons, T., Kugler, H.: Formalizing UML models and OCL constraints in PVS.
ENTCS 115 (2005) 39–47

6. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL con-
straints. ECEASST 24 (2009)

7. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’ SMT solvers. In: 15th MoDELS. (2012) 432–448

8. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using boolean satisfiability. In: DATE, Dresden, Germany
(2010) 1341–1344

9. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: Ocl-lite: Finite reasoning on
UML/OCL conceptual schemas. Data & Knowledge Engineering 73 (2012) 1 – 22

10. Dania, C., Clavel, M.: Ocl2fol+: Coping with undefinedness. In: OCL@MoDELS.
(2013)



11. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation
by logic solvers. In: 19th FASE, Springer (2016) 87–103

12. Przigoda, N., Wille, R., Drechsler, R.: Ground setting properties for an efficient
translation of OCL in SMT-based model finding. In: 19th MoDELS, ACM (2016)
261–271

13. Dania, C., Clavel, M.: Ocl2msfol: A mapping to many-sorted first-order logic for
efficiently checking the satisfiability of ocl constraints. In: 19th MoDELS, ACM
(2016) 65–75

14. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL data types for SAT-based
verification of UML/OCL models. In: 5th TAP, Zurich, Switzerland, Springer
(2011) 152–170

15. Wu, H., Monahan, R., Power, J.F.: Exploiting attributed type graphs to generate
metamodel instances using an SMT solver. In: 7th TASE, Birmingham, UK (2013)

16. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. Journal of Systems and Software 93 (2014) 1–23

17. Gogolla, M., Büttner, F., Cabot, J. In: Initiating a Benchmark for UML and OCL
Analysis Tools. Springer (2013) 115–132

18. Gogolla, M., Cabot, J. In: Continuing a Benchmark for UML and OCL Design
and Analysis Tools. Springer (2016) 289–302

19. Wu, H.: Finding achievable features and constraint conflicts for inconsistent meta-
models. In: 13th ECMFA. (2017)

20. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: 14th TACAS, Budapest,
Hungary, Springer (2008) 337–340

21. Wille, R., Soeken, M., Drechsler, R.: Debugging of inconsistent UML/OCL models.
In: 2012 DATE. (2012) 1078–1083

22. Balaban, M., Maraee, A.: Finite Satisfiability of UML Class Diagrams with Con-
strained Class Hierarchy. ACM Transacation on SEM. 22(3) (2013) 24:1–24:42

23. Cabot, J., Teniente, E.: A metric for measuring the complexity of OCL expressions.
In: Model Size Metrics Workshop@MODELS 2006.

24. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: 8th USENIX Conference
on Operating Systems Design and Implementation. (2008) 209–224

25. Peleska, J., Vorobev, E., Lapschies, F. In: Automated Test Case Generation with
SMT-Solving and Abstract Interpretation. Springer (2011) 298–312

26. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: The 32nd PLDI, ACM (2011) 62–73

27. Phothilimthana, P.M., Thakur, A., Bodik, R., Dhurjati, D.: Greenthumb: Super-
optimizer construction framework. In: 25th CC, ACM (2016) 261–262

28. Healy, A., Monahan, R., Power, J.F.: Predicting SMT solver performance for
software verification. In: 3rd Workshop on FIDE. (2016) 20–37

29. Wu, H.: Generating metamodel instances satisfying coverage criteria via SMT
solving. In: The 4th MODELSWARD. (2016) 40–51

30. Wu, H.: An SMT-based Approach for Generating Coverage Oriented Metamodel
Instances In: IJISMD 7 (2016), 23–50

31. Wu, H.: MaxUSE: A Tool for Finding Achievable Constraints and Conflicts for
Inconsistent UML Class Diagrams. In: 13th integrated Formal Methods

32. Noten, J., Mengerink, J. G. M., Serebrenik, A.: A Data Set of OCL Expressions
on GitHub. In: 14th International Conference on Mining Software Repositories


	Step 0: An Idea for Automatic OCL Benchmark Generation
	Hao Wu

