
Synthesising Call Sequences from OCL Operational Contracts∗

Hao Wu
Maynooth University
haowu@cs.nuim.ie

ABSTRACT

The Unified Modeling Language (UML) is widely used by software
engineers in different phases of software development cycle. It al-
lows them to visualise and depict a system into different diagrams.
Among these diagrams, UML class diagrams are used to capture
the structure of a system including classes, attributes and associ-
ations. The set of operation calls defined in a UML class diagram
then capture the behaviour of a system. These operation calls typ-
ically constrain the inputs and outputs via a set of pre or postcon-
ditions (operational contracts) written in Object Constraint Lan-
guage (OCL). Hence, a sequence of operation calls conforming to
pre or postconditions is crucial to analyse, verify and understand
the behaviour of a system. In this paper, we propose a new tech-
nique for synthesising call sequences from a set of operational con-
tracts. This technique works by reducing a synthesis problem to
a satisfiability modulo theories (SMT) problem. The preliminary
results show that our technique is capable of synthesising call se-
quences at a large scale.

CCS CONCEPTS

• Software and its engineering→Model-driven software en-

gineering;UnifiedModelling Language (UML); Software ver-

ification;

KEYWORDS

UML, OCL, SMT Solver, Sequence Synthesis

ACM Reference Format:

Hao Wu. 2019. Synthesising Call Sequences from OCL Operational Con-
tracts. In The 34th ACM/SIGAPP Symposium on Applied Computing (SAC

’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3297280.3297612

1 INTRODUCTION

The Unified Modelling Language (UML) is a general-purpose mod-
elling language for visualising and building a software system at
an abstract level. It provides users with different diagrams for mod-
elling both structural and behavioural aspects of a system. For ex-
ample, a class diagram is used to describe the relationships among

∗Produces the permission block, and copyright information

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).
SAC ’19, April 8–12, 2019, Limassol, Cyprus

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5933-7/19/04.
https://doi.org/10.1145/3297280.3297612

entities or to model the transitions between states in a state ma-
chine. The Object Constraint Language (OCL) on other hand, pro-
vides a way of specifying necessary constraints that cannot be ex-
pressed by the diagrams. These constraints allow users to formally
express rules over the structural and behavioural aspects of a sys-
tem. For example, a class invariant is used to specify a property for
all instances or a precondition to constrain inputs of an operation
call.

Although the combination of UML andOCLmakes modelsmore
formal, the tasks associatedwith verification or reasoning are quite
challenging [4, 23]. Recently, numerous approaches have been pro-
posed to tackle this challenge [3, 7, 21, 22]. Many of these focus
on checking the consistency of a UML class diagram with a set
of OCL constraints (structural aspects of a system) whilst a few
of them consider operational contracts (behavioural aspects of a
system) [18, 19]. In general, operational contracts are specified as
pre/postconditions of an operation call and they capture constraints
over different behaviours and system states. In this paper,we present
an approach that uses satisfiability modulo theories (SMT) to syn-
thesise call sequences from a set of OCL operational contracts. The
synthesised call sequences are very helpful for users to verify or
test a software system at an abstract level.

In this paper, we propose a novel technique that reduces synthe-
sising call sequences from OCL operational contracts to a satisfia-
bility modulo theories (SMT) problem. Our technique works by en-
coding OCL operational contracts into a set of first order formulas
that can be efficiently solved by an SMT solver [9]. More specifi-
cally, this paper reports our initial idea and preliminary work.

2 RELATED WORK

Exisiting approaches to generating/synthesising call sequences from
OCL operational contracts are focusing on using filmstripping [12,
14]. In general, the filmstripping approach translates the source
model into so-called flimstrip models. These models essentially are
UML class diagrams annotated with OCL constraints. These con-
straints are frame conditions that specify the changes to the model.
One of the major advantages using filmstrip is that the low level
(SAT solver) is not explicitly exposed to users. Thus, it does not
require users to have the knowledge at the solver level. However,
the cost here is the substantial manual interaction at model level.
Therefore, the filmstripping approach is suitable for very dedicated
tasks.

Though the idea of tackling operational contracts via SMT solv-
ing is not new [18, 19], the existing SMT-based approaches are
quite limited by proposed SMT encodings. In comparison, our pro-
posed approach here aims to improve existing SMTbased approaches
by proposing a first-order encoding. Our preliminary results show
that this encoding has a potential of allowing users to synthesising
call sequences at a much larger scale.

https://doi.org/10.1145/3297280.3297612
https://doi.org/10.1145/3297280.3297612

SAC ’19, April 8–12, 2019, Limassol, Cyprus Hao Wu

Cabot et al. propose a systematic approach that uses constraint
progamming (CP) to program the verification of UML models an-
notated with OCL operational contracts into a constraint satisfac-
tion problem [6, 13]. The main advantage is that CP provides a
high-level language so that a particular constraint problem is pro-
grammable. Their approach provides a variety of properties to be
checked. Instead of designing a number of different verification
properties, our work focuses on improving existing SMT-based ap-
proaches by proposing a first-order encoding so that synthesising
sequences at large scale is possible. In particular, our encoding pos-
sesses high expressiveness and flexibility meanwhile it maintains
the performance.

Alloy as a model finding tool, is widely used in the modelling
community for verifying UML class diagrams [15, 20]. However,
much of thework uses Alloy as its basis focuses on verifying/solving
structural constraints of a system [2, 10, 16]. For example, Kyriakos
et, al. maps a range of OCL constructs to Alloy’s specificaiton [2],
and Kuhlmann et, al. integrates kodkod (Alloy’s solving engine)
into the USE modelling tool and this enables them to be able to
verify and analyse UML models annotated different types of OCL
constraints [20].

Other approaches have sought to formalise UML and OCL into
different types of formalisms, including interactive theoremprovers
such as Isabelle and KeY [1, 5, 8]. For example, Brucker et, al. shows
that OCL can be translated to high-order logic (HOL) and proved
by using Isabelle while Kyas et, al. formalises UML models with
OCL into PVS [17].

3 OUR PROPOSED APPROACH

In this section, we describe our propose approach to synthesising
call sequences from OCL operational contracts. Formally, in order
to synthesise a call sequence, the user must provide:

• a UML class diagram of the form 〈C,A, Γ, ∆〉 , whereC is a
set of classes,A is a set of associations, Γ defines a set of class
invariants and ∆ is a set of operation calls. Each operation
δ ∈ ∆ specifies a set of pre/postconditions: Pre and Post .

• the length k of a call sequence, where k is the number of
operation calls in a sequence.

• a set of user-specified properties P .
The objective here is to discover a sequence of operation callsG 〈k,P 〉 ,
that has a length of k with properties P . Visually, such a sequence
G 〈k,P 〉 can be viewed as follows:

G 〈k,P 〉 : S0
δ1

−−−−→ S1
δ2

−−−−→ S2
δ3

−−−−→ S3 · · ·
δk

−−→ Sk

where each δi in a sequence represents an operation call selected
from ∆, and each Sj is a state that is triggered by an δi in the previ-
ous state Sj−1. S0 is the initial state and Sk is the final state that is
derived by the kth operation call (δk) in a sequence. Note that δk is
called in Sk−1 and triggers Sk . Thus, a call sequence of length of k
creates a total ofk+1 states. In each state Sj , there is exactly one op-
eration call δi invoked to make the transition to the next state Sj+1.
Therefore, this transition captures all possible sequences that have
a length of k . Our idea of searching for a sequence of operation
calls with properties P is to reduce it to an SMT problem. Formally,
we castG 〈k,P 〉 to the following formula:

G 〈k,P 〉
def
= Φ ∧ Ψ (1)

where Φ encodes all possible call sequences with a length of k and
Ψ encodes a set of user-defined properties. Here, we define Φ as the
synthesis constraints and Ψ as the property constraints. In gen-
eral, the search space for finding a call sequence with respect to
pre/postconditions is |∆|k . We say a sequence is found/synthesised
when an SMT solver successfully solves Formula 1 or a counter-
example is discovered when the solver solves Φ ∧ ¬Ψ.

The Φ in Formula 1 represents a set of formulas ϕ 〈i, j 〉 and each
encodes a δi at state j. Precisely, each ϕ 〈i, j 〉 is defined as follows:

ϕ 〈i, j 〉
def
= Pre ∧ Post ∧ Inv (2)

where Pre imposes a precondition on the objects from the previous
state and Post constrains what needs to be achieved in the current
state 1. Inv encodes a set of constraints that indicate the class in-
variants (Γ) should hold at all states.

3.1 State-based Functions

Our idea of representing an object in each state is to use a state-
based (uninterpreted) function. To be precise, wemap each attribute
and association defined in a class diagram to a state-based uninter-
preted function F . In general, this F has an n-ary form:

F : T1 ×T2 × . . . ×Tn−1 × INT → Tn

The type of each argument depends on different features defined in
a model except for the last one. Here, we define the last argument
as an integer type that represents a state j. The return type of F
also depends on a particular feature. We then use this F as one part
of the encodings for Pre , Post and Inv in Formula 2. For example,
we can define a function Fvalue : INT × INT → INT . Then the
formula Fvalue (o, 2) = 10 encodes an integer type attribute value
of an object o at state 2 is assigned to a value of 10,

3.2 Collection

We allow unbounded collection data types by utilising Array the-
ory defined in SMT. In particular, we encode collection data types
such as Baд and Set directly into an Array and map operations
over an Array at a particular state to a set of state-based uninter-
preted functions. For example, we can use Array theory to encode
a collection of items as follows:

items
def
= (Baд INT) and (Baд T)

def
= (Array INT T)

where items is a bag of integers specifying a particular object id,
INT in (Baд T) indicates an index and T denotes a particular type.
We now can further define a state-based uninterpreted function
Select that allows us to select an element from a collection at a
particular state.

Select : (Baд INT) × INT × INT → T

For example, Select(items, 0, 1) = item0 means that the first ele-
ment in the collection items at state 1 must be item0.

4 EVALUATION RESULTS

Table 1 shows the initial evaluation results of our proposed ap-
proach. In general, we are able to synthesise a call sequence with
respect to the pre/postconditionswithin one second ifk (the length
of a call sequence) is set to less than 50. Thus, in order to effectively

1If we consider state j as our current state.

Synthesising Call Sequences from OCL Operational Contracts SAC ’19, April 8–12, 2019, Limassol, Cyprus

Length

Company [11] TrafficLights [19] Bank [18] Marriage [12] Onlineshop

o = 10, c = 30 o = 3, c = 9 o = 8, c = 24 o = 4, c = 12 o = 7, c = 8
Time Size Time Size Time Size Time Size Time Size

k = 60 1.34 2717 0.20 602 5.78 1558 1.16 2579 1.11 792
k = 80 1.41 4956 0.34 812 8.57 2078 1.96 3456 1.42 1051
k = 100 3.93 6196 0.66 1024 16.82 2598 2.44 4315 2.29 1315
k = 120 7.47 7437 0.73 1246 19.24 3118 4.76 5175 2.54 1527
k = 140 8.51 8678 2.23 1442 32.93 3928 5.94 6035 3.04 1832

Table 1: The evaluation results of synthesis constraints for eachmodel. k here denotes the length of synthesised call sequence

(This also means that we have k+1 number of the states). o denotes the number of created objects and c indicates the number

of pre/postconditions considered in each triggered state. The time unit is seconds. Size measures the number of generated

formulas.

evaluate our approach, we set k from 60 to 140 with an interval of
20. As it can be seen, our technique is able to synthesise call se-
quences with a number of objects within a reasonable amount of
time. Interestingly, we notice that the number of generated SMT
formulas is not always proportional to the solving time. The per-
formance is mainly affected by the types of constraints specified
in pre/postconditions. For example, the Company model in Table
1 specifies multiple constraints over collection data types (sets) as
pre/postconditions while the Bank model has additional numeri-
cal constraints for its pre/postconditions. In fact, we notice that
Bank model imposes a great challenge on the SMT solver, though
it produces relatively less formulas. This is because the operational
contracts of this model are quite complex than other models. In
particular, it models the transactions between different accounts
and banks using quantifiers over numeric constraints such as all
recipient’s account receives a certain amount of money transfer.

5 CONCLUSION

In this paper, we propose a new way of synthesising call sequences
by reducing it to an SMT problem. In the future, we plan to ex-
tend this proposed approach in three aspects: (1) Allowing much
larger scale synthesis. Existing approaches are limited by generat-
ing call sequences at smaller scale. (2) Enable property based syn-
thesis. This can allow users not only to synthesis call sequences
but also with respect to different types of properties. (3) Optimise
our first-order encoding and we are currently investigating a new
technique that can help us to significantly reduce the number of
formulas generated.

REFERENCES
[1] Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. 2007.

KeY: A Formal Method for Object-Oriented Systems. In Formal Methods for Open
Object-Based Distributed Systems. Springer Berlin Heidelberg, 32–43.

[2] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. 2007.
UML2Alloy: A Challenging Model Transformation. In ACM/IEEE 10th Interna-
tional Conference on Model Driven Engineering Languages and Systems. Springer,
Nashville, TN, 436–450.

[3] Mira Balaban and Azzam Maraee. 2013. Finite Satisfiability of UML Class Di-
agrams with Constrained Class Hierarchy. ACM Transcation on Software Engi-
neering and Methodology 22, 3, Article 24 (2013), 42 pages.

[4] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. 2005. Reasoning
on UML Class Diagrams. Artificial Intelligence 168, 1-2 (2005), 70–118.

[5] Achim D. Brucker and Burkhart Wolff. 2009. Semantics, calculi, and analysis for
object-oriented specifications. Acta Informatica 46, 4 (01 Jul 2009), 255–284.

[6] Jordi Cabot, Robert Clarisó, and Daniel Riera. 2014. On the verification of
UML/OCL class diagrams using constraint programming. Journal of Systems

and Software 93 (2014), 1–23.
[7] Manuel Clavel, Marina Egea, and Miguel Angel GarcÃŋa de Dios. 2009. Check-

ing Unsatisfiability for OCL Constraints. Electronic Communication of the Euro-
pean Association of Software Science and Technology 24 (2009).

[8] Carolina Dania and Manuel Clavel. 2016. OCL2MSFOL: A Mapping to Many-
sorted First-order Logic for Efficiently Checking the Satisfiability of OCL Con-
straints. In 19th International Conference onModel Driven Engineering Languages
and Systems. ACM, 65–75.

[9] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, Budapest, Hungary, 337–340.

[10] Ana Garis, Alcino Cunha, and Daniel Riesco. 2011. Translating Alloy Spec-
ifications to UML Class Diagrams Annotated with OCL. In 9th International
Conference on Software Engineering and Formal Methods. Springer, Montevideo,
Uruguay, 221–236.

[11] Martin Gogolla, Fabian Büttner, and Mark Richters. 2007. USE: A UML-based
specification environment for validating UML and OCL. Science of Computer
Programming 69, 1-3 (2007), 27–34.

[12] Martin Gogolla, Frank Hilken, Khanh-Hoang Doan, and Nisha Desai. 2017.
Checking UML and OCL Model Behavior with Filmstripping and Classifying
Terms. In 11th International Conference on Tests & Proofs. 119–128.

[13] Carlos Alberto González Pérez, Fabian Buettner, Robert Clarisó, and Jordi Cabot.
2012. EMFtoCSP: A Tool for the Lightweight Verification of EMF Models. In
Formal Methods in Software Engineering: Rigorous and Agile Approaches. Zurich,
Suisse.

[14] Frank Hilken and Martin Gogolla. 2016. Verifying Linear Temporal Logic Prop-
erties in UML/OCL Class Diagrams Using Filmstripping. In 2016 Euromicro Con-
ference on Digital System Design. 708–713.

[15] Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering Methodologies 11, 2 (2002), 256–290.

[16] Mirco Kuhlmann and Martin Gogolla. 2012. From UML and OCL to Relational
Logic and Back. In 15th International Conference on Model Driven Engineering
Languages and Systems. Springer, 415–431.

[17] Marcel Kyas, Harald Fecher, Frank S. de Boer, Joost Jacob, Jozef Hooman, Mark
van der Zwaag, Tamarah Arons, and Hillel Kugler. 2005. Formalizing UMLMod-
els and OCL Constraints in PVS. Electronic Notes in Theoretical Computer Science
115 (2005), 39–47.

[18] N. Przigoda, C. Hilken, R. Wille, J. Peleska, and R. Drechsler. 2015. Checking
concurrent behavior in UML/OCL models. In 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS). 176–185.

[19] M. Soeken, R. Wille, and R. Drechsler. 2011. Verifying dynamic aspects of UML
models. In Design, Automation Test in Europe. 1–6.

[20] Emina Torlak and Daniel Jackson. 2007. Kodkod: a relational model finder. In
13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, Braga, Portugal, 632–647.

[21] Hao Wu. 2016. Generating Metamodel Instances Satisfying Coverage Criteria
via SMT Solving. In The 4th International Conference on Model-Driven Engineer-
ing and Software Development. 40–51.

[22] Hao Wu. 2017. Finding Achievable Features and Constraint Conflicts for Incon-
sistent Metamodels. In 13th European Conference on Modelling Foundations and
Applications. Springer, 179–196.

[23] Hao Wu. 2017. MaxUSE: A Tool for Finding Achievable Constraints and
Conflicts for Inconsistent UML Class Diagrams. In Integrated Formal Methods.
Springer, 348–356.

	Abstract
	1 Introduction
	2 Related Work
	3 Our Proposed Approach
	3.1 State-based Functions
	3.2 Collection

	4 Evaluation Results
	5 Conclusion
	References

