
Science of Computer Programming 228 (2023) 102955
Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Original software publication

QMaxUSE: A new tool for verifying UML class diagrams and 

OCL invariants

Hao Wu

Computer Science Department, Maynooth University, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 May 2022
Received in revised form 28 February 2023
Accepted 4 April 2023
Available online 6 April 2023

Keywords:
Verification
UML&OCL
Query SMT
Unsatisfiable core

Formal verification of a UML class diagram annotated with OCL constraints has been a 
long-standing challenge in Model-driven Engineering. In the past decades, many tools 
and techniques have been proposed to tackle this challenge. However, they do not scale 
well and are often unable to locate the conflicts when then number of OCL constraints 
significantly increases. In this paper, we present a new tool called QMaxUSE. This tool is 
designed for verifying UML class diagrams annotated with large number of OCL invariants. 
QMaxUSE is easy to install and deploy. It offers two distinct features. (1) A simple query 
language that allows users to choose parts of a UML class diagram to be verified. (2) A 
new procedure that is capable of performing concurrent verification.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

Code metadata

Code metadata description

Current code version 1.0.3
Permanent link to code/repository used for this code version https://github.com/ScienceofComputerProgramming/SCICO-D-22-00134
Permanent link to Reproducible Capsule https://github.com/classicwuhao/qmaxuse
Legal Code License GNU General Public License (GPL)
Code versioning system used git
Software code languages, tools, and services used Java 1.7, USE Modelling Tool, Z3
Compilation requirements, operating environments and dependencies Microsoft Windows, Linux, MacOS.
If available, link to developer documentation/manual https://github.com/classicwuhao/qmaxuse
Support email for questions haowu@cs.nuim.ie

1. Introduction

In software engineering, Unified Modeling Language (UML) class diagrams along with Object Constraint Language (OCL) 
are typically used to model structures of a system [1,2]. For example, an entity of a system is depicted as a class, and 
relationships between different entities are represented as inheritance or associations. OCL is then used by modeling prac-
titioners to express additional constraints that cannot be captured by the UML graphical notation. For example, a user may 
impose a constraint over an attribute of a class diagram.

However, reasoning or verifying the consistency of a UML class diagram is quite challenging [3,4]. Formally, verifying the 
consistency means checking whether a valid instance can or cannot be generated from a UML class diagram and its OCL 

E-mail address: haowu@cs.nuim.ie.
https://doi.org/10.1016/j.scico.2023.102955
0167-6423/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.scico.2023.102955
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2023.102955&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ScienceofComputerProgramming/SCICO-D-22-00134
https://github.com/classicwuhao/qmaxuse
https://github.com/classicwuhao/qmaxuse
mailto:haowu@cs.nuim.ie
mailto:haowu@cs.nuim.ie
https://doi.org/10.1016/j.scico.2023.102955
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


H. Wu Science of Computer Programming 228 (2023) 102955
Fig. 1. The overall architecture of QMaxUSE.

constraints. If it cannot be generated (found), then a UML class diagram is said to be inconsistent.1 This implies that there 
exists at least one conflict in the structural and OCL constraints defined in the UML class diagram. To tackle this challenge, 
many approaches and techniques have been proposed [5–11]. There are still two main challenges remaining: (1) When a 
UML class diagram is inconsistent, many existing tools are unable to pinpoint the set of OCL constraints that cannot be 
satisfied. (2) When the number of OCL constraints significantly increases, the existing tools and techniques do not scale 
well [9,12].

The performance and scalability of a tool is particularly important for industries [13–15]. This is because they typically 
have models with a large number of OCL constraints. Hence, our aim in this paper is to present our latest verification tool 
QMaxUSE [16,17] that has the following two distinct features:

1. Provide an interactive verification that allows users to incrementally verify the consistencies of their models by selecting 
different parts of their design for analysis.

2. Offer a scalable approach that can pinpoint the conflicting constraints when a model has a large number of complex 
OCL invariants.

2. Architecture

QMaxUSE is very easy to install, use and no additional libraries are required. QMaxUSE is written in Java and consists 
of about 33k lines of code. Currently, QMaxUSE supports Windows, Linux and macOS. QMaxUSE is a command-line tool 
based verification tool and uses the same USE modelling tool GUI for showing pre-defined queries. Fig. 1 shows the overall 
architecture of QMaxUSE. It has four main layers: front-end, query engine, translation and solver. Each layer has its own 
functionality and provides relevant information for the next layer. We now describe each layer in detail.
Front-end. This layer is responsible for parsing queries issued by users and generating query ASTs (abstract syntax trees) 
along with information collected from a UML class diagram and OCL invariants. To successfully parse a query from a user, 
we have designed a query parser that extends the existing USE’s parser. Our query grammar consists of about 14 rules that 
are written in ANTLR specification. During the traversal of a query, our parser constructs a corresponding query AST and 
checks its semantics including query operators, types of a set of features and integrity of OCL invariants. Our parser reports 
syntax and semantics errors to users if there is any.
Query Engine. This layer has four main modules: selection, decomposition, thread management and query verification.

1. Selection Module: The selection module uses a selection algorithm to traverse the ASTs generated from the font-end 
layer and produces a query result. In particular, our selection algorithm visits each node of a query AST, analyses the 
type of each operator and collects different model features from a model. The collected model features are saved in a 
query result that essentially is a set. This set contains a list of classes, attributes, associations and OCL invariants to be 
verified. The syntax and semantics of our query language is described in [18].

2. Decomposer: The decomposition module has a specialised algorithm that is able to decompose a class diagram along 
with OCL invariants into a set of different queries. These queries then can be verified concurrently using a query 
verification procedure. This module is enabled when a user would like to perform a concurrent verification. With the 
support of this decomposition algorithm, it is now possible to verify a UML class diagram that has a large number of 
OCL invariants. The algorithms used in this module are described in [18].

1 Note that for this scenario, this may also mean that an algorithm may not terminate and the problem itself is not decidable.
2



H. Wu Science of Computer Programming 228 (2023) 102955
3. Thread Manager: This module is responsible for controlling the number of threads to be spawned for verification. 
Depending on configurations, users could specify a particular number of threads for concurrent verification for both 
simpler and complex verification tasks. By default, the number of threads created is based on the number of queries 
produced by our decomposition module (Decomposer).

4. Query Verification: This module uses an algorithm to take care of the verification of a single query. In other words, 
when a user issues a query in QMaxUSE, this module formally verifies the parts touched by the query.

Translation. This layer uses a first-order translator to translate a query into a set of first-order formulas that can be verified 
by the SMT solver. The translation here is similar to the one described in [9]. We use first-order formulas to encode classes 
or attributes and linear integer inequalities to capture the multiplicities at an association-end. For an OCL invariant, we 
traverse its AST and generate an SMT formula by using a combination of first-order theories.
Solver. At this layer, we design a new interface (SolverManager) to reduce the interaction overhead between the translation 
and solver layer. This interface is able to directly interact with an SMT solver and can be extended to multiple SMT solvers. 
Currently, QMaxUSE uses Z3 as its default SMT solver [19].2

2.1. Software functionalities

We describe the functionalities QMaxUSE offers to facilitate query and verification.

• Feature Selection. A user can issue a query to select features of a UML class diagrams. Every query must use a select
statement. The features can be selected by a query are: attributes, classes, associations and OCL invariants. A wildcard 
character * can be used within a select statement to choose many features. The rule here is when a feature is selected, 
its owner is also implicitly selected. For example, the following query

select Person.* with Student::*

selects all attributes of the Person class and invariants of the Student class, and the classes Person and Student are 
also implicitly selected.

• Joint Query. Multiple queries can be joined together as a joint query. To form a joint query, a user can use one of the 
three joint operators: intersection (&), union (+) and difference (-). To facilitate forming multiple complex queries into 
a joint query, QMaxUSE provides users with an alias expression. This allows users to refer an alias in a joint query. For 
example, the following two queries

select Person.* with Student::*, Student::* as q1

select University.*, Module.* as q2

use two alias names q1 and q2 respectively. A joint query (intersection) can then be easily formed by using q1 & q2
to select common features shared by these two queries.

• Pre-defined Query. QMaxUSE provides a query module that allows users to store their pre-defined queries so that they 
can be used as test cases to cover parts of their UML class diagrams. A query module is saved in a USE specification file 
and automatically loaded when a user launches QMaxUSE.

• Concurrent Verification. A user can use command qverify in the QMaxUSE command-line to start a concurrent ver-
ification on current loaded UML class diagram. This command decomposes a class diagram into many smaller queries 
and verifies each of them concurrently. QMaxUSE lists relevant conflicting OCL invariants if a query contains any.

3. An illustrative example

In this section, we provide an illustrative example to show how to use QMaxUSE to verify a UML class diagram. This 
example was first introduced in [20,12] and later extended in [9]. It models a university student that can select multiple 
modules to study. This is shown in Fig. 2. Furthermore, this UML class diagram has 8 OCL class invariants. These invariants 
impose additional constraints. For example, inv5 indicates a student can select modules that are available only in their year.3

A department must have some research students and non-research students. This constraint is reflected in inv6. However, 
this class diagrams has a total number of two conflicting OCL invariants.

A user can use QMaxUSE to verify this UML class diagram in two ways: query and concurrent verification. For queries-
based verification, a user may issue a query (in QMaxUSE) that covers a part of this diagram, and QMaxUSE is able to verify 
the parts covered by the query. For example, a user could issue the following query to select the attributes from the Person
and Student class along with two OCL invariants: inv1 and inv2.

select Person.*, Student.* with Person::inv1, Student::inv2

2 Though users can switch to different SMT solvers, the completeness of algorithms for extracting unsat cores is determined by individual SMT solver.
3 In this example, numbers 1 to 6 are used to distinguish a student’s year. Students that are in year 6 are considered as research students.
3



H. Wu Science of Computer Programming 228 (2023) 102955
Fig. 2. A UML class diagram with the 8 OCL class invariants shows how the students in each department can choose multiple modules to study.

Fig. 3. A screenshot showing the verification result returned from QMaxUSE for a single query.

QMaxUSE verifies the features collected by this query and reports a conflict between inv1 and inv2. This is because inv1
indicates that every person’s age is between 0 and 18, while inv2 requires that every student in a university is over 18. 
Hence, it is impossible to create an instance of the Student class. A screenshot of the verification result of the query is 
shown in Fig. 3.

To enable concurrent verification, a user can just simply type qveri f y to launch our decomposition algorithm. This 
algorithm creates a number of threads and each of them verifies a part of the class diagram. In this example, a number 
of 3 threads are created. This is because this class diagram can be decomposed into 3 different queries. A screenshot of 
concurrent verification for the class diagram (Fig. 2) is shown in Fig. 4. The second conflict implies that a department 
allows some research and non-research students (inv6) to choose some modules (inv7) in their corresponding year (inv5). 
However, inv8 indicates that modules are only available for non-research students (inv8: between year 1 and 5).
4



H. Wu Science of Computer Programming 228 (2023) 102955
Fig. 4. A screenshot showing QMaxUSE’s concurrent verification results for the UML class diagram in Fig. 2.

Table 1
Evaluation results. Invs=number of OCL invariants, Nodes=size of invariant ASTs, Quant=number of quantifiers, Op=number of operators. TO= Timeout 
(20min), MaxUSE=our previous tool without query and concurrent verification support.

Name OCL Structure Size MaxUSE [12] QMaxUSE

Invs Nodes Quant Op Time (sec) Threads Time (sec)

Pa
rt

A

A4 8 73 7 18 0.204 3 0.241
B1 27 150 10 30 4.528 23 2.022
B2 45 266 13 57 56.846 32 3.046
C1 29 201 24 33 38.167 19 3.413
C2 43 279 28 51 91.319 33 5.954

Pa
rt

B

B4 90 599 23 152 159.378 68 7.151
B5 136 925 44 228 TO 90 118.64
C5 156 1008 100 184 TO 90 114.41
D5 166 1143 131 225 TO 95 14.026
E4 105 985 56 246 TO 42 4.464
E5 167 1134 68 325 TO 45 3.653

4. Evaluation results

We use a benchmark from [9] to show the size and the complexities of OCL invariants QMaxUSE can handle. This bench-
mark has a total of 25 different class diagrams annotated with different size of OCL invariants. This benchmark covers a 
wide range of OCL language features including: nested quantifiers, collections, logical/arithmetic operations and navigations.

Table 1 summarises a subset of our evaluation results for QMaxUSE.4 Part A shows QMaxUSE’ performance on smaller 
size OCL invariants while Part B demonstrates its performance on large size OCL invariants. The more detailed evaluation 
results including a comparison against other tools can be seen in [17]. The evaluation shown here is carried out on an 
Intel(R) Core (TM) machine that has six 2.8 GHz cores with 16 GB memory. The underlying SMT solver is the Z3 SMT solver 
(version 4.8.10).

In general, QMaxUSE can significantly improve verification performance. This is mainly due to two reasons. (1) We 
directly extract unsat cores from the SMT solver (Z3) through its dedicated APIs. This is fundamentally different from our 
previous tool MaxUSE [12,9]. The algorithm MaxUSE tries to satisfy as many OCL invariants as possible by reducing to a 
weighted MaxSMT problem, and then pinpoints conflicting invariants by solving the set cover problem [21]. Although this 
algorithm is generic, it can easily become very slow when the number of formulas increases. QMaxUSE operates differently 
from MaxUSE. It directly extracts unsat cores from the solver without implementing an extra layer on top of the solver. 
However, the limitation here is that a solver must support unsat core extraction. (2) Our concurrent verification algorithm is 
able to generate a number of much smaller size of formulas. These formulas can be scheduled to be verified efficiently even 
via a single thread since they are much less complex and smaller. This can significantly improve QMaxUSE’s performance 
and makes it possible to verify a large number of OCL invariants. We observe that the number of nested quantifiers in 
a formula (∀ ∃) can pose a significant challenge to the solver. Therefore, a verification engine that relies on the solvers 
may have the same challenge especially when the number of nested formulas dramatically increases. In a different manner, 
QMaxUSE is able to shift solving these large size of formulas to runs on a much smaller size of formulas. This yields a much 
better result and performance.

4 More detailed evaluation including comparison is in [18].
5



H. Wu Science of Computer Programming 228 (2023) 102955
5. Conclusion

Though many existing tools and techniques have been proposed for verifying UML class diagrams annotated with OCL 
invariants, they often do not scale well and unable to pinpoint conflicts. QMaxUSE offers an elegant solution to scalability 
problem by providing query-based verification. This allows users to issue queries that can cover different parts of a class 
diagram. It also can decompose a class diagram that has a large number of OCL invariants into different much smaller 
queries for verification. In the future, we plan to extend QMaxUSE to support OCL operational contracts so that users can 
reason about dynamic aspects of a system. The challenge here is to integrate our current technique into a specification 
language that can capture dynamic behaviour of a system.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

References

[1] C. Atkinson, T. Kühne, Model-driven development: a metamodeling foundation, IEEE Softw. 20 (5) (2003) 36–41.
[2] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, second edition, Addison-Wesley Professional, 2005.
[3] D. Berardi, D. Calvanese, G.D. Giacomo, Reasoning on UML class diagrams, Artif. Intell. 168 (1–2) (2005) 70–118.
[4] A. Queralt, E. Teniente, Reasoning on UML class diagrams with OCL constraints, in: Conceptual Modeling, Springer, 2006, pp. 497–512.
[5] M. Gogolla, F. Hilken, K. Doan, Achieving model quality through model validation, verification and exploration, Comput. Lang. Syst. Struct. 54 (2018) 

474–511.
[6] A. Queralt, A. Artale, D. Calvanese, E. Teniente, OCL-Lite: finite reasoning on UML/OCL conceptual schemas, Data Knowl. Eng. 73 (2012) 1–22.
[7] A. Maraee, M. Balaban, Efficient reasoning about finite satisfiability of UML class diagrams with constrained generalization sets, in: 3rd European 

Conference Model Driven Architecture, Springer, 2007, pp. 17–31.
[8] M. Balaban, A. Maraee, Finite satisfiability of UML class diagrams with constrained class hierarchy, ACM Trans. Softw. Eng. Methodol. 22 (3) (2013) 24.
[9] H. Wu, M. Farrell, A formal approach to finding inconsistencies in a metamodel, in: Software and Systems Modeling, Springer, 2021.

[10] M. Kuhlmann, M. Gogolla, Strengthening SAT-Based Validation of UML/OCL Models by Representing Collections as Relations, Modelling Foundations 
and Applications, vol. 7349, Springer, 2012, pp. 32–48.

[11] O. Semeráth, A. Vörös, D. Varró, Iterative and incremental model generation by logic solvers, in: 19th International Conference on Fundamental Ap-
proaches to Software Engineering, Springer, 2016, pp. 87–103.

[12] H. Wu, MaxUSE: a tool for finding achievable constraints and conflicts for inconsistent UML class diagrams, in: 13th International Conference on 
Integrated Formal Methods, Springer, 2017, pp. 348–356.

[13] S. Ali, T. Yue, M. Zohaib Iqbal, R.K. Panesar-Walawege, Insights on the use of OCL in diverse industrial applications, in: D. Amyot, P. Fonseca i Casas, G. 
Mussbacher (Eds.), System Analysis and Modeling: Models and Reusability, Springer International Publishing, Cham, 2014, pp. 223–238.

[14] M.Z. Iqbal, S. Ali, T. Yue, L. Briand, Experiences of applying UML/MARTE on three industrial projects, in: R.B. France, J. Kazmeier, R. Breu, C. Atkinson 
(Eds.), Model Driven Engineering Languages and Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 642–658.

[15] D. Garry, T. Balfe, Experiences using OCL for business rules on financial messaging, in: Proceedings of the 12th Workshop on OCL and Textual Modelling, 
OCL ’12, Association for Computing Machinery, New York, NY, USA, 2012, pp. 65–66.

[16] H. Wu, QMaxUSE: a query-based verification tool for UML class diagrams with OCL invariants, in: 25th International Conference on Fundamental 
Approaches to Software Engineering, Springer, Munich, Germany, 2022.

[17] H. Wu, A query-based approach for verifying UML class diagrams with OCL invariants, in: 18th European Conference on Modelling Foundations and 
Applications, 2022.

[18] H. Wu, A query-based approach for verifying UML class diagrams with OCL invariants, in: The 18th European Conference on Modelling Foundations 
and Applications, ECMFA 2022, J. Object Technol. 21 (3) (2022) 1–17, https://doi .org /10 .5381 /jot .2022 .21.3 .a7.

[19] L. De Moura, N. Bjørner, Z3: an efficient SMT solver, in: International Conference on Tools and Algorithms for the Construction and Analysis of Systems, 
Springer, 2008, pp. 337–340.

[20] H. Wu, Finding achievable features and constraint conflicts for inconsistent metamodels, in: European Conference on Modelling Foundations and 
Applications, Springer, 2017, pp. 179–196.

[21] M.H. Liffiton, K.A. Sakallah, Algorithms for computing minimal unsatisfiable subsets of constraints, J. Autom. Reason. 40 (1) (2008) 1–33.
6

http://refhub.elsevier.com/S0167-6423(23)00037-0/bibFD826B55BC976D029282B18F8988B911s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib8F3AFA34553B1062CF6EB085A775FDC6s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bibC898607F51CB887C8D74A4C33F5ECB07s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib18ECF5900F3E438C7651046B16A89EC8s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bibA08017B0CF8500D81AC47B4EAC127AC0s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bibA08017B0CF8500D81AC47B4EAC127AC0s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bibDDDF6FA3C5E8769AB788917ADACE9D2Bs1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib32D4546A98D552DC5EC3D4843A3F7ADDs1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib32D4546A98D552DC5EC3D4843A3F7ADDs1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib506A16FD5FDE821648471672801D3687s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bibC38C143D513331D1F2C45C4C2E8A6526s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib35A4BB70B85F3E0BED5974B854C5D53Es1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib35A4BB70B85F3E0BED5974B854C5D53Es1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib229085B7BDD26B0ADEC30BDBB4C065A5s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib229085B7BDD26B0ADEC30BDBB4C065A5s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib2BBFF3006BE18B2E88B121141E5A0E20s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib2BBFF3006BE18B2E88B121141E5A0E20s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bibC4A0DA9234CDE1D40CACF3913AFEA534s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bibC4A0DA9234CDE1D40CACF3913AFEA534s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib3C8888E567115007CD8F45F814DF30B9s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib3C8888E567115007CD8F45F814DF30B9s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib5F2D4D9039813B545B9F0BDF1B1FC50Cs1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib5F2D4D9039813B545B9F0BDF1B1FC50Cs1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bibF3D257FAA03A58AC08507A0BA72E4383s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bibF3D257FAA03A58AC08507A0BA72E4383s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib6F126EB3E688BED4A6E95D4958273182s1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib6F126EB3E688BED4A6E95D4958273182s1
https://doi.org/10.5381/jot.2022.21.3.a7
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib445F5A901C4C0B5E6228C22C6932A6CAs1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib445F5A901C4C0B5E6228C22C6932A6CAs1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib3A3E41FFE805F296799DA25A6A44304Es1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib3A3E41FFE805F296799DA25A6A44304Es1
http://refhub.elsevier.com/S0167-6423(23)00037-0/bib35B9AFAC5BE4057BEBBD476191D2FE73s1

	QMaxUSE: A new tool for verifying UML class diagrams and OCL invariants
	1 Introduction
	2 Architecture
	2.1 Software functionalities

	3 An illustrative example
	4 Evaluation results
	5 Conclusion
	Declaration of competing interest
	References


