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Abstract—In this paper we present an approach to gen-
erating instances of metamodels using a Satisfiability Modulo
Theories (SMT) solver as a back-end engine. Our goal is to
automatically translate a metamodel and its invariants into
SMT formulas which can be investigated for satisfiability by an
external SMT solver, with each satisfying assignment for SMT
formulas interpreted as an instance of the original metamodel.
Our automated translation works by interpreting a metamodel as
a bounded Attributed Type Graph with Inheritance (ATGI) and
then deriving a finite universe of all bounded attribute graphs
typed over this bounded ATGI. The graph acts as an intermediate
representation which we then translate into SMT formulas. The
full translation process, from metamodels to SMT formulas, and
then from SMT instances back to metamodel instances, has been
successfully automated in our tool, with the results showing the
feasibility of this approach.

I. INTRODUCTION

From software development to programming language
engineering, the metamodelling approach to development is
widely adopted by software designers. The metamodel is the
core of the metamodelling approach, where a metamodel is a
formalism for defining sets of models, typically conforming
to some metamodelling architecture such as the Meta-Object
Facility (MOF) [16]. The MOF is based on the Unified Mod-
elling Language (UML), particularly the UML class diagram
notation, and thus a metamodel represented in MOF can
also be defined as a UML class diagram. The goal of the
metamodelling approach is to provide software engineers with
a high-level abstraction, enabling them to refine the design of
their models in order to alleviate the complexity of the code
level. In this sense, the correctness of a metamodel becomes
extremely important. But this raises one problem: how can
one make sure the metamodel is correct? One solution to this
problem, examined in this paper, is to automatically generate
metamodel instances, and use these generated instances to test
or verify the properties of a metamodel.

An instance of a metamodel is a concrete model that
conforms to its metamodel. Here, “conformance” means that
the concrete model satisfies each relationship (such as gen-
eralisation and association) and any constraints (expressed,
for example using the Object Constraint Language (OCL))
defined in a metamodel [17]. A practical example might
be a metamodel for the Java programming language, where
the classes are the elements of the abstract syntax, where
the constraints define the static semantics, and where the
instances of the metamodel are valid and compilable Java
programs. Generating instances for such a Java programming
language metamodel is equivalent to producing syntactically

and semantically correct Java programs. This contrasts with
traditional algorithms based on generating a set of testing
sentences from a context free grammar (CFG), leading to a
large number of syntactically correct but semantically incorrect
programs [18].

However, generating instances of a metamodel is difficult
[3]. This is mainly because the relationships (generalisation
and association) in a metamodel impose limitations on how
the instances of each class relate to each other in a model. In
addition, generating one instance that conforms to a metamodel
and also satisfies additional constraints (such as OCL invari-
ants) at the same time is undecidable. Nonetheless, its solution
is important when testing or reasoning about the correctness
of a metamodel.

The first contribution of this paper is that we present a
way of translating a metamodel and its invariants into SMT2
formulas based on a attributed graph notation [8]. The second
contribution of this paper is that we automate the approach
proposed in this paper and implement it in a tool which can
generate valid metamodel instances.

II. BACKGROUND AND RELATED WORK

In this section we review some of the background in
attributed and typed graphs, as well as SMT solvers, and
discuss existing research related to our work.

A. Metamodels and Graphs

Elements in a UML class diagram can be represented as
a graph, where each class can be considered as a node, and
relationships between classes are edges linking one node to
another. Since a metamodel can be defined using a UML class
diagram, a metamodel can also be interpreted as a graph. We
consider all metamodels used in this paper as being presented
as UML class diagrams, and formally represented as graphs.

The structure of interest to our work is an Attributed Type
Graph with Inheritance, and can be defined in terms of a basic
graph in three stages (following [8]):

Attributed Graph: An attributed graph
is a tuple AG = (G,D), with G =
(VG, VD, EG, ENA, EEA, (sj , tj)j∈{G,NA,EA}) and
D = (SD, OPD) where

1) VG and VD denote sets of a graph and data nodes
(vertices).

2) EG, ENA and EEA denote a set of graph attributes, node
attributes and edge attributes
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3) sG : EG → VG, tG : EG → VG are source and target
functions mapping graph edges to nodes.

4) sNA : ENA → VG, tNA : ENA → VD are source and
target functions for the node-attribute edges.

5) sEA : EEA → EG, tEA : EEA → VD are source and
target functions for the edge-attribute edges.

6) SD denotes a set of attribute value sorts.
7) OPD denotes a set of operations over SD.
8) D denotes a data signature algebra such that ∪̇s∈SD

Ds =
VD.

Attributed Type Graph: An attributed type graph is an
attributed graph ATG = (TG,Z), where Z is the final data
signature algebra. A typed attributed graph (AG, t) has an
attributed graph AG with a morphism t : AG→ ATG.

Attributed Type Graph with Inheritance: An attributed type
graph with inheritance is a triple ATGI = (ATG, I,A) where

1) ATG is an attributed type graph.
2) I = (VI , EI , s, t) is an inheritance graph (where VI =

TGVG
).

3) A denotes a set of abstract nodes, and A ⊆ VI .

For any node x ∈ VI , we define clanI(x) = {y ∈
VI |∃ path y

∗−→ x in I} ⊆ VI .

Figure 1(a) shows an example of a metamodel represented
as an ATGI in an explicit notation. Each type node (nodes in
TGVG

are called type nodes) is depicted as a rectangle with
a name to indicate a particular type. The italic font is used
to indicate an abstract node, and an edge such as worksIn
describes a relation between two type nodes. The nodes for
data types (nodes in TGVD

are called data type nodes) are
depicted as rectangles with round corners, with a dashed line
connecting a type node and a data type node. Inheritance is
depicted as in a UML class diagram, i.e. a solid line with a
hollow arrow connecting two type nodes. The sets of nodes in
the ATGI of Figure 1(a) can be enumerated as follows:

TGVG
= {Person,Worker,Department}.

TGVD
= {Integer,Gender}.

TGEG
= {(Person,worksIn,Department),

(Worker, worksIn,Department)}.
TGENA

= {(Person, gender,Gender),
(Person, age, Integer),
(Department, code, Integer).

TGEEA
= ∅.

A = {Person}.

In addition, clan(Person) = {Person,Worker},
clan(Worker) = {Worker}, and clan(Department) =
{Department}.

A metamodel, represented as an ATGI , can also be
represented in compact notation as shown in Figure 1(b).

B. Using a SMT2 Solver

We use a Satisfiability Modulo Theories (SMT) solver as
our back-end engine since the SMT solver’s rich background
theories allow us to represent our logical formula that encode
metamodels more naturally than a plain Satisfiability (SAT)
solver [7]. For example, OCL constraints in a metamodel
which use integer arithmetic can be easily represented as a

formula using the Integer background theory. We encode our
formulas using the SMT-LIB 2.0 standard (SMT2) which is
well-supported by many fast SMT solvers [2].

C. Related Work

The Alloy tool operates as a model finder, translating a
problem to a format suitable for a SAT solver [14]. The
current version of Alloy relies on its engine kodkod which
provides an efficient translation scheme for large problems
[21]. However, it still performs poorly when handling integer
arithmetic operations and this is mainly due to bit-blasting
[22]. For example, an integer value over 1000 requires a bit
width of 11 in Alloy which significantly slows down translation
time. In contrast, SMT solvers are particularly good at dealing
with relatively large numbers, since the integer arithmetic
operations can be easily translated to corresponding SMT2
formulas.

Another disadvantage of Alloy is that it uses its own
language, different from the metamodelling standards, ne-
cessitating an extra translation phase. Unfortunately, such a
translation is not always straightforward, for example a one-
to-one binary association in a metamodel requires a series of
additional Alloy facts to constrain it appropriately. Though
some of the research has already been conducted in this
area, such a mapping can only increase the complexity of the
instance generation process [1].

Similar to Alloy, the Formula tool is also designed to solve
general constraint problems, but Formula uses a SMT solver
as its back-end engine [15]. Thus, it has an advantage over
Alloy’s approach, which is a pure SAT-based approach when
dealing with integer arithmetic. However, Formula is based on
algebraic data types and constraint logic programming, thus
any metamodels in MOF or UML class diagrams need to be
translated into the Formula language. Since no automated tools
support such translation, mapping a huge metamodel with OCL
invariants without human interaction is almost infeasible. In
addition, visualising any instances found from Formula would
require an extra mapping back from the instance found by
Formula to an instance of a metamodel. Thus, using Formula
to find instances for a metamodel requires a lot of manual
work.

Graph grammars offer a natural way to describe the
derivation process and so have an advantage for generating
metamodel instances [9], [12]. However, parsing a graph is
expensive in terms of algorithmic complexity because a graph
matching is not always deterministic, as a rule may match
several sub graphs. Furthermore, OCL constraints must be
manually transformed into graph constraints which can cause
a problem when one has to deal with a large number of OCL
constraints, even with very basic ones [23].

Cabot at el. propose a procedure that can transform a
UML class diagram with OCL constraints into a Constraint
Satisfaction Problem (CSP) according to a set of rules [6],
[5], [11]. However, they do not provide translation rules for
translating unidirectional associations, which we have found to
be the most common kind of association used in metamodels.
Although their translation process is automated, their approach
cannot be used to enumerate instances and only supports much
smaller metamodels than ours.
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Fig. 1: Examples of (a) an ATGI in explicit notation. (b) a Bounded ATGI in compact notation. (c) an instance of a Bounded
ATGI in explicit notation

Soeken et al. encode a UML class diagram in a set of
operations on bit-vectors which can be solved by SMT solvers
using bit-vector theory [19]. A successful assignment for each
bit-vector can be interpreted as an instance of the UML class
diagram. Soeken et al. also propose an approach to encode a
subset of OCL constraints as bit-vectors [20], and provide a
list of corresponding mappings between OCL collection data
types (Set, Bag, Sequence) and bit-vector operations. However,
their approach does not provide an encoding for different
multiplicities defined for a unidirectional and bidirectional
association, especially those that are most commonly used.
Furthermore, their approach does not allow a solution enu-
meration, and has not been fully automated. Thus, with a large
metamodel and many OCL invariants, their approach involves
manually translating the metamodel and OCL constraints into
bit-vectors.

III. REPRESENTING A METAMODEL AS A GRAPH

In our approach, we bound the search space to find all valid
metamodel instances within that bound. Thus, we introduce the
definition of a bounded attributed type graph with inheritance
(ATGIb). Based on this, our approach forms a finite universe
of all bounded attribute graphs AGu typed over a given
ATGIb, and this AGu represents the superset of the instances
that will be found.

Bounded Attributed Type Graph with Inheritance:
A bounded ATGI is a tuple ATGIb =
(TG,Z, I, A, b,mults,multt), where
• (TG,Z) are the elements of an ATG, and I, A are the

elements of an ATGI, as above.
• mults, multt : TGEG

→ Z+
⋃
{∗}.

mults and multt are two functions which define the
multiplicities at an edge’s source and target nodes.
• b is a function, b : TGVG

→ Z+, defining a
bound for each type node in TG with a constraint
{∃n in TGVG

|b(n) > 0}.

Since each ATGI contains a bounding function
b, each instance of ATGIb is also bounded and
finite. Thus, a bounded attributed graph typed over
ATGIb can be represented as (AGb, typeb) with a
morphism typeb : AGb → ATGIb, where typeb =
(typeb,VG

, typeb,VD
, typeb,EG

, typeb,ENA
, typeb,EEA

, typeb,D).

Each particular type node n in TGVG
is assigned a bound

by b, and this bound indicates the maximum number of
instances of an exact type node n that may appear in each
metamodel instance. A bound nb for a type node n can
be assigned manually by a user or automatically calculated
according to the different multiplicities in the metamodel. For
an abstract node, no explicit bound is assigned, but this can be
calculated by summing the bounds of its concrete descendants.
Thus, the bound nb of a general or an abstract type of node
n can be calculated nb =

∑
b(clan(n)). Ideally, nb will be

greater than zero, or else we consider that type node n cannot
be instantiated through its descendants.

With respect to the bound defined in ATGIb, we can form
a finite universe of all bounded attributed graphs typed over
ATGIb. Each instance of ATGIb can be derived from this
universe. To simplify the following definitions, an edge e is
represented by a pair e = (a, b), where a = sj(e), b = tj(e),
and j ∈ {G,NA,EA}.

Finite Universe: The finite universe of all bounded attributed
graphs typed over ATGIb can be defined as a pair
(AGu, typeu), where

1) AGu is the finite universe of all bounded attributed graphs
typed over ATGIb,

2) typeu : AGu → ATGIb, with
typeu = (typeu,VG

, typeu,VD
, typeu,EG

,
typeu,ENA

, typeu,EEA
, typeu,D), and where:

• VG = {g1, g2, ..., gn},
and {typeu,VG

(gi)} ⊆ TGVG
, for 1 ≤ i ≤ n.

• VD = {d1, d2, ..., dm},
and {typeu,VD

(di)} ⊆ TGVD
, for 1 ≤ i ≤ m.

• ENA = {e1, ..., ej} ⊆ VG × VD,
and {typeu,VG

(sNA(ei))} ⊆ TGVG
,

and {typeu,VD
(tNA(ei))} ⊆ TGVD

, for 1 ≤ i ≤ j.
• EG = {ej+1, ..., ek} ⊆ VG × VG,

and {typeu(sG(ei))} ⊆ TGVG
,

and {typeu(tG(ei))} ⊆ TGVG
, for j + 1 ≤ i ≤ k.

• EEA = {ek+1, ..., ep} ⊆ EG × VD,
and {typeu(sEA(ei))} ⊆ TGEG

,
and {typeu(tEA(ei))} ⊆ TGVD

, for k + 1 ≤ i ≤ p.

VG contains all type nodes in TGVG
to be instantiated with

respect to the bound defined for each type node in TGVG
. VD

is defined similarly to VG except that the type of each node
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in VD is a type node in TGVD
. Consequently, ENA defines

a containing relation over VG and VD by joining two nodes
from different sets into an edge e. Similarly, EG defines the
set of all possible links between two type nodes in TGVG

.

For example, Figure 1(b) shows an ATGIb, where the
bound for each type node is depicted as a circled number
in the top-right corner of each type node. Here, there is
a bound of 2 for type node Worker, a bound of 1 for
type node Department and no bound for abstract node
Person. The multiplicity function multt(worksIn) = {1}
and mults(worksIn) are unused.

With respect to this ATGIb, the finite universe of all
bounded attributed graphs typed over the ATGIb depicted in
Figure 1(b) can be defined as follows:

1) VG = {w1, w2, d1}.
2) VD = {age1, gender1, age2, gender2, code1}.
3) ENA = {e1 = (w1, age1), e2 = (w1, gender1), e3 =

(w2, age2), e4 = (w2, gender2), e5 = (d1, code1)}.
4) EG = {e6 = (w1, d1), e7 = (w2, d1)}.
5) typeu,VG

(w1) = typeu,VG
(w2) =

Worker, typeu,VG
(d1) = Department,

6) typeu,VD
(age1) = typeu,VD

(age2) =
typeu,VD

(code1) = Integer,
7) typeu,VD

(gender1) = typeu,VD
(gender2) = Gender.

8) b(typeu,VG
(w1)) = b(typeu,VG

(w2)) =
2, b(typeu,VG

(d1)) = 1.

Figure 1(c) shows a sample instance derived from the
universe of attributed graphs by selecting {w1} from VG,
{age1, gender1, code1} from VD, {e1, e2, e5} from ENA and
{e6} from EG, along with three assignments, of 40 and 101
to age1 and code1, and gender1 to the literal Male.

IV. TRANSLATING A METAMODEL TO SMT2 FORMULAS

Since, in our approach, a metamodel is represented as
an ATGIb, generating instances for a metamodel becomes
the process of instantiating an ATGIb. Thus, the idea of
generating metamodel instances using a SMT solver is that
we translate nodes and edges defined in the finite universe
of all bounded attributed graphs typed over ATGIb into
SMT2 quantifier freed formulas, and let the SMT solver assign
appropriate values for those nodes and edges. Then:

• Each successful assignment by the SMT solver is inter-
preted as a bounded attributed graph typed over ATGIb
(an instance of a metamodel).

• A unsuccessful assignment indicates that no graphs (in-
stances) can be found in the current bounds for each
type node in ATGIb, and a user is confident enough to
conclude that the metamodel is inconsistent in the current
bounds. It is still, of course, possible to find an instance
within larger bounds [13].

Figure 2 gives a summary of the translation rules for graph
nodes, data nodes, node attributes and graph edges defined
in AGu. We use −→ to denote a translation. In this figure,
rules 1-4 show the translation rules for translating nodes and
edges, while rules 5-7 show additional constraints for nodes
and edges. In Figure 2,

1) {ni ∈ VG : 1 ≤ i ≤ |VG|} −→
{(declare–fun ni () Bool)},

2) {di ∈ VD : 1 ≤ i ≤ |VD|} −→
{(declare–fun di () T) : T ∈ {Bool, Int}},
but when (typeu(di) = {Enum}) −→
{(declare–fun di () Int)}
add {(assert (and (>= di 0) (<= di |Enum| − 1)))}
Here |Enum| denotes the number of literals in an
enumeration type.

3) {ei ∈ ENA : 1 ≤ i ≤ |ENA|} −→
{(declare–fun ei () Bool)}

4) {ei ∈ EG : 1 ≤ i ≤ |EG|} −→
{(declare–fun ei () Bool)}

5) {(assert (=> ei (and sNA(ei) tNA(ei)))) : 1 ≤ i ≤
|ENA|}

6) {(assert (=> ei (and sG(ei) tG(ei)))) : 1 ≤ i ≤
|EG|}

7) {(assert (=> (not sNA(ei)) (= tNA(ei) v))) : 1 ≤
i ≤ |ENA|}
where if typeu(tNA(ei)) = {Integer}, then v = (− 1).
and if typeu(tNA(ei)) = {Bool}, then v = false.
and if typeu(tNA(ei)) = {Enum}, then v = 0.

Fig. 2: Translation rules for VG, VD, ENA and EG defined in
AGu.

• Every node in VG is translated into a Boolean constant
in SMT2, representing whether or not it will be present
in the instance.
• The nodes in VD representing basic data types are

translated into different types of constants according to
their types. In the current approach, we support three
different basic data types which are Boolean, integer and
enumeration type. A node in VD which has an integer type
is directly mapped to an Int constant in SMT2. Similarly,
a Boolean type node is mapped to a Bool constant. We
translate a node whose type is an enumeration type to
an Int constant in SMT2 with an extra constraint. This
constraint limits the domain of an Int constant to between
zero and the number of literals defined in an enumeration
data type minus one.
• Each edge in EG and EEA is mapped to a Boolean

constant (rules 3 and 4). An additional constraint for each
edge e in ENA is imposed to indicate that when e is
selected, both nodes sNA(e) and tNA(e) encoded by e are
also forced to be selected (rule 5). Similarly, an additional
constraint is also defined for each edge in EG (rule 6).
• For each data node d in VD, we also need an extra

constraint specifying that when a graph node n in VG is
not selected, none of its data attributes need to be selected.
We restrict the assignment for d to a single fixed value
v so that each time the graph node n is not selected, the
corresponding d’s value is always a fixed default value.
This constraint is encoded in rule 7 in Figure 2, with the
fixed value for d determined by its type.

A. Translating Associations

A metamodel can have inheritance and association rela-
tionships between entities, and these two relationships can be
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considered as additional constraints for a metamodel, encoded
as extra SMT2 formula for the nodes and edges contained in
VG, VD, ENA, and EG.

For a generalisation relationship between two nodes
parent ∈ VG and child ∈ VG with clan(typeu(child)) ⊂
clan(typeu(parent)), we simply add edges that encode all
data nodes contained by parent into Echild. We use Echild to
denote the set of edges that encode all data nodes contained
by typeu(child), where Echild ⊆ ENA. For a child that has
two or more parents, we combine data nodes contained by all
parents into Echild.

Associations in a metamodel can be categorised into two
kinds: unidirectional and bidirectional. In a metamodel, these
two kinds of associations can be decorated with different
multiplicities that impose a constraint on how two nodes can
be linked in a metamodel instance. To encode constraints for
different multiplicities defined on an association, we extract a
subset of edges Er from EG that encode all the links between
two different type nodes, group them into a 2D-array, and then
use logical connectives to specify the different multiplicities.

In this 2D-array:

• The rows and columns of Er are denoted as Er:row and
Er:column respectively.

• Er:row represents all links from one instance of A to one
instance of B.

• Er:column represents all links from one instance of B to
one instance of A.

• The edge at ith row and jth column of Er is represented
as e[i][j].

Figure 3 summarises the translation rules for translating
unidirectional associations. Here, we only consider Er:row. For
example, for an association r with the multiplicity 1..∗ defined
at one end, we apply the SMT2 or function through each row
of the array (rule 3 in Figure 3). This forces the SMT solver
to select at least one edge from each row. Rule 1 captures
that each instance of A can have exactly one reference to
an instance of B. That is, when an edge at the ith row and
jth column in the 2D-array is selected, the rest of the edges
in the ith row cannot be selected. Rule 2 is formed by the
disjunction of rule 1 and the negation of rule 3. It captures that
each instance of A can either have zero references or exactly
one reference to an instance of B. Finally, rule 4 states that
either zero edges or at least one edge is selected from each
row in the 2D-array.

Figure 4 summarises the translation rules for the most
commonly used bidirectional associations. The rules for bidi-
rectional associations are similar to unidirectional association.
However, for a bidirectional association r, we apply our
translation rules in two dimensions (Er:row and Er:column)
according to different multiplicities defined for both ends
of the association r. After applying the translation rules,
each dimension results in one subformula, which we join via
conjunction.

Since a bidirectional link is symmetric we interpret each
edge e = (a, b) as two links, i.e. a link from a to b, and
a link that goes back from b to a. Rule 1 describes one-
to-one bidirectional associations. It is similar to rule 1 for
unidirectional associations except that the translation rule is

Fig. 3: Translation rules for unidirectional association

Fig. 4: Translation rules for bidirectional association

also applied through Er:column, thus forcing the SMT solver
to select exactly one edge from two dimensions.

In Figure 4, rules 1 and 2 are similar, except that the sub
formula marked with # in rule 2 ensures that no edges from
a row are selected, and since all the links are bidirectional,
the same sub formula is applied through Er:column. Rule 3
conjoins a subformula from rule 1 with a formula that allows
at least one edge from each column to be selected. Similarly,
rule 4 is a conjunction that ensures that no instances of A
are associated with any instances of B and that, due to the
relationships symmetry, no instances of B are associated with
any instances of A.

B. Translating OCL Invariants

Apart from the constraints defined on multiplicities for
associations, additional invariants expressed in OCL can also
be defined over a metamodel. Since we represent everything
in a metamodel as an ATGIb, OCL invariants defined on a
metamodel can be considered as additional formulas over the
nodes and edges of the ATGIb. To deal with the additional
OCL invariants, we parse OCL into an abstract syntax tree
(AST), traverse the AST nodes to extract relevant nodes and
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Fig. 5: An example of translating an OCL constraint. Here,
the OCL constraint is:

Manager.allInstances()->exists(m|m.age>50
and m.age<55)

edges from AGu, and translate them into SMT2 formula. We
conjoin the formulas with those produced for the metamodel
and input the result into the SMT solver to find an assignment.

The OCL invariants that we can handle by our translation
can be summarised as follows:

1) OCL integer and logical expression can be directly
mapped to corresponding SMT2 functions by using the
following function F : expr → SMT2Formula.

2) Since we represent a metamodel as a bounded attributed
type graph, quantifiers over an object type is a set of
graph nodes (VG) that are bounded by it’s type node
(TGVG

). The following formulas show the translation
from a quantified OCL expression to SMT2 formulas.

a) Obj.allInstances()→exists(expr) −→
b(Obj)∨
i=1

F (expri)

b) Obj.allInstances()→forAll(expr) −→
b(Obj)∧
i=1

F (expri)

c) Obj.allInstances()→one(expr) −→
b(Obj)∨
i=1

(

b(Obj)∧
j=1
j 6=i

¬F (exprj) ∧ F (expri))

3) Quantifiers can be used in a nested chain to indicate
an operation over two different sets of instances. For
this kind of nested quantifiers, we perform an extra
translation step by calculating the cross product of
F (expri) and F (exprj). The following SMT2 formulas
show the translation for nested quantifier OCL expression
A.allInstances()→forAll(B.allInstances→exists(expr)).
b(A)∧
i=1

b(B)∨
j=1

F (expri)× F (exprj)

4) A navigation used in an OCL expression can be inter-
preted as a reference to a set of edges in our graph
representation of a metamodel. The translation for a
navigation r thus is performed by extracting relevant
edges from EG, and use the following translation rule
to translate them into SMT2 formuals.

Fig. 6: Graph colouring metamodel

|Er|∧
i=1

D(ei)⇒ F (expri), where D : EG → SMT2V ar.

It is obvious that not every OCL invariant can be translated
to SMT2 formulas by using the rules above, but these rules
support most practical invariants. For example, Figure 5 shows
a full translation of an OCL invariant step by step. The
expression Manager.allInstances() indicates that all graph
nodes having type Manager are extracted from VG. The
operators >,< and and are mapped to corresponding SMT2
functions, and the quantifier exists is translated to or over the
relevant instances.

V. AN EXAMPLE

In this section, we use a metamodel of graph colouring as
an example to demonstrate our approach. The metamodel itself
can be seen in Figure 6. This metamodel is constrained with
two OCL invariants. The first one specifies that no node can
have itself as its neighbour, while the second one indicates that
a node and its neighbour cannot share the same colour. From
the metamodel to ATGIb, and ATGIb to SMT2 formulas, the
translation proceeds as follows:

1) The metamodel itself is first translated into an ATGIb
with I = ∅ by defining b(Node) = 5 (depicted in the
right top corner of Node), and a finite universe AGu is
formed from ATGIb.

2) The typed node Node is translated to a boolean function
in SMT2 with defined bound of 5.

3) Data node Colour is an enumeration type and thus gets
translated into an integer function in SMT2 in the range
0− 2 inclusive (since we only have three colours here.).

4) Every edge in Eadj is also translated to a boolean function
in SMT2.

5) For the first invariant, the translation process eliminates
all the edges e such that sG(e) 6= tG(e). Thus, the graphs
left are those that do not contain cycles of length 1.

6) The translation for second invariant iterates the remaining
edges such that each sG(e).colour 6= tG(e).colour.
Therefore, this step makes sure each edge’s source and
target object selected by SMT solver will not share the
same literal.

7) Finally, the formulas from steps 2-4 conjoined with for-
mulas from step 5 and 6, and fed into the SMT solver.
In this case it is Z3. One successful assignment found by
Z3 is interpreted as an instance of the metamodel. Figure
7 shows one of the interpreted instances.
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Fig. 7: One of the instances of graph colouring metamodel
found by Z3. The letter in each node of this graph represents

a colour (R:Red, G:Green, B:Blue), and an edge between
two nodes means they are adjacent.

VI. IMPLEMENTATION AND RESULTS

We have implemented this approach in a tool called A Small
Metamodel Instance Generator (ASMIG). ASMIG is a fully
automated tool, which:

1) reads in a metamodel in Ecore format [4],
2) represents it as a bounded attributed graph (AGu) typed

over ATGIb,
3) translates AGu and OCL invariants into SMT2 formulas,
4) invokes the Z3 SMT solver to find an assignment for

SMT2 formulas,
5) interprets each successful assignment as a valid instance

of the metamodel.

Figure 8 depicts this process, which is fully automatic.

Fig. 8: The flow diagram for ASMIG. The inputs to the
process are an Ecore metamodel and a set of OCL

constraints, and the outputs are a set of valid instances of the
metamodel.

To speed up translation, all nodes and edges are stored
in red-black trees within a hash table. To prevent generat-
ing repeated solutions for each enumeration, any previous
successful assignments for a formula are negated and added
as an extra SMT2 formula. ASMIG also supports partial
models, but at present the partial model needs to be defined
internally via relevant APIs. To visualise each instance that

Number of Time in ms
Metamodel Classes Assocs Attribs Translation Avg Finding
Company 2 7 6 6 476ms 38ms
C 1.0 1 34 4 0 388ms 54ms
C++ 1.0 1 16 4 5 372ms 26ms
Java 5 233 104 1 666ms 441.7ms
Royal&Loyal 3 15 41 2 403ms 36.1ms
Finite State Ma-
chine 1.0 1

6 7 0 368ms 26ms

Ecore 4 22 40 0 439ms 42.8ms
UML2 Class Dia-
gram 4

40 26 46 442ms 41.6ms

Web App: Con-
ceptual Model1

19 24 0 368ms 42.7ms

KM3 1 12 7 0 365ms 33.4ms
Business Process
Model 1

26 15 0 375ms 62.2ms

CPL1.0 1 32 16 0 384ms 94.9ms
DoDAF-SV5 1 31 54 1 391ms 99.8ms
GraphML 1 11 13 2 392ms 37.8ms
Hierarchical State
Machine 1.0 1

15 16 0 378ms 42.2ms

Maven(maven.xml)
0.3 1

58 32 0 403ms 74.3ms

MoDAF0.1 1 48 35 0 398ms 49.0ms
QualityofService
1

24 26 0 376ms 51.9ms

DOT1.0 1 26 20 0 386ms 58.7ms
BibTexML1.2 1 28 4 0 379ms 39.8ms

TABLE I: Details of 20 metamodels; 100 instances of these
metamodels (except for the Finite State Machine) were

generated by the ASMIG tool.

is generated, ASMIG generates a GraphViz representation for
each successful assignment and caches the generated formula
to speed up each enumeration [10]. Furthermore, ASMIG can
also generate instances that do not conform to the metamodel
(negative test cases) by negating one or more of the SMT2
formula.

Table I shows the results of evaluating our approach against
20 different metamodels. In this table, “Classes”, “Assocs” and
“Attribs” denote the number of (non-abstract) classes, associa-
tions and attributes translated for each metamodel. To evaluate
the feasibility of our approach, we show the translation time
for each metamodel, and also calculate the average time spent
on finding an instance. This is based on the average time for
the first 100 instances enumerated (except for the Finite State
Machine 1.0 metamodel were there were only 16 instances
enumerated in total with the bound of 1 for each type).

All instances for the metamodels are generated on a
machine with a 2.8GHz Intel Core2Quad CPU and 4GB of
RAM. In the current version of ASMIG we use Z3 as the
back-end solving engine, so the average time spent on finding
an instance depends on both the formulas we generated and the
Z3 solving time. All these metamodel instances are generated
by using ASMIG with a default bound of 1 for each exact
type in 19 metamodels. In order to examine the translation for
OCL invariants, we choose bounds of 2 and 3 for classes in
the metamodel.

It is difficult to compare our results with existing work,
since existing approaches only evaluate their work on much
simpler metamodels [9], [12], [6], [19]. We use different sized
metamodels collected from different sources to evaluate the
speed of translation, average instance finding time and their
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practical applications. We hope that this set of metamodels can
be considered as well-worked examples, so that others can use
it as a benchmark for future comparisons.

The translation time is affected by two factors, the size of
the metamodels and the type of associations in a metamodel.
For example, the full Java metamodel referred to in Table I
has 233 classes and 104 associations and the average instance
finding time is much longer than that for the Finite State
Machine 1.0 which only has 6 classes and 4 associations.
Regarding the type of associations used in a metamodel, a
one–to–one bidirectional association produces more formulas
than a one–to–many bidirectional association as it is more
constrained.

Having OCL invariants defined on a metamodel also affects
the translation time. For example, the Company metamodel
has 7 OCL invariants, which require an additional 30ms for
their translation. We cannot present all the instances generated
from ASMIG due to space limitations, but these instances are
available from our website 6.

VII. CONCLUSION

In this paper we have described an approach that repre-
sents a metamodel as a Bounded Attributed Type Graph with
Inheritance (ATGIb), and translates a universe of all bounded
attribute graph typed over ATGIb into SMT2 formulas. A fully
automatic tool called ASMIG implementing this approach has
been used to generate instances within a short time, even for
relatively large metamodels. The advantage of our approach
is that we closely bind attributed type graphs with an SMT
solver to find instances for metamodels, and our tool ASMIG
demonstrates the feasibility of automation of this approach.

In future work we intend to extend our approach to provide
more useful instances for software engineering, for example,
finding all instances that can achieve given testing or coverage
criteria.

REFERENCES

[1] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray.
UML2Alloy: A challenging model transformation. In ACM/IEEE 10th
International Conference on Model Driven Engineering Languages and
Systems, pages 436–450, Nashville,Tennessee, USA, 2007. Springer.

[2] Clark Barrett, Aaron Stump, Cesare Tinelli, Sascha Boehme, David
Cok, David Deharbe, Bruno Dutertre, Pascal Fontaine, Vijay Ganesh,
Alberto Griggio, Jim Grundy, Paul Jackson, Albert Oliveras, Sava Krsti,
Michal Moskal, Leonardo De Moura, Roberto Sebastiani, To David
Cok, and Jochen Hoenicke. The SMT-LIB Standard: Version 2.0. In 8th
International Workshop on Satisfiability Modulo Theories, Edinburgh,
UK, 2010. Elsevier Science.

[3] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Rea-
soning on UML class diagrams. Artificial Intelligence, 168(12):70–118,
2005.

[4] Frank Budinsky, David Steinberg, Ed Merks, Ray Ellersick, and
Timothy J. Grose. Eclipse Modeling Framework. Addison Wesley
Professional, 2003.

1available at: http://www.emn.fr/z-info/atlanmod/index.php/Ecore
2simple example similar to Figure 1, available at our website
3from Eclipse Modeling Framework Royal and Loyal Example Project
4extracted from Eclipse Modeling Framework
5available at: http://www.jamopp.org/index.php/JaMoPP Download
6http://www.cs.nuim.ie/∼haowu/ASMIG/Results/MM
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